# Section 2.2 :::{prf:definition} Equation of Circle :label: circleEquation The equation of a circle with radius $r$ and centered at $(0,0)$ is: $$x^2+y^2=r^2$$ The equation of a circle with radius $r$ and centered at $(h,k)$ is: $$(x-h)^2+(y-k)^2=r^2$$ ::: ## Completing the Square Remember $(x+a)^2=x^2+2ax+a^2$ and $(x-a)^2=x^2-2ax+a^2$. ::::{prf:example} :label: completeSquare1 Given the expression $x^2+x+C$. Find the value $C$ to complete the square. :::{dropdown} Solution: If $C=-2$, then $x^2+x-2=(x+2)(x-1)$ which does not complete the square. For this problem, we want to find the $C$ values to make a perfect square polynomial. If $C=\left(\frac{1}{2}\right)^2=\frac{1}{4}$ then $$x^2+x+\frac{1}{4} = \left(x+\frac{1}{2}\right)^2 ::: :::: Remember when completing the square we want the leading coefficient to be one. ::::{prf:example} :label: completeSquare2 Using completing the square, solve the following equation: $$ 6x^2+13x+5=0 $$ :::{dropdown} Solution: First, we will divide by $6$ to both sides of the equation to get the leading coefficient to be one. We then get $$x^2+\frac{13}{6} x +\frac{5}{6} = 0$$ Next, we will set up the equation for completing the square: $$x^2 +\frac{13}{6} x + C = -\frac{5}{6} + C$$ Here, we want to find $C$ that will complete the square. $$C=\left(\frac{\frac{13}{6}}{2}\right)^2 = \left(\frac{13}{12}\right)^2=\frac{169}{144}$$ Substituting the $C=\frac{169}{144}$ back into the equation and solving for $x$ we have: \begin{align*} x^2 +\frac{13}{6} x + C & = -\frac{5}{6} + C\\ x^2 +\frac{13}{6} x + \frac{169}{144} & = -\frac{5}{6} + \frac{169}{144}\\ \left(x+\frac{13}{12}\right)^2 & = \frac{49}{144} x+\frac{13}{12} & = \pm \sqrt{\frac{49}{144}}\\ x & = \frac{13}{12} \pm \frac{7}{12} \end{align*} That is, the solution set is $\{-\frac{1}{2},-\frac{5}{3}\}$. ::: :::: ## General to Standard Form Circle Equation Next, we will use the knowledge of completing the square to write $x^2+y^2+Dx+Ey+F=0$ to $(x-h)^2+(y-k)^2=r^2$. This way we will be able to identify the circle's center and radius. ::::{prf:example} :label: genSndCircle Given $2x^2+2y^2+2x-6y=45$. Rewrite the equation in the form $(x-h)^2+(y-k)^2=r^2$ then find the center and radius of the resulting circle. :::{dropdown} Solution: First, we will divide both sides of the equation by $2$. $$ x^2 + y^2 + x - 3y = \frac{45}{2} $$ Next, we will set up the completing the square for the $x$ expression and the $y$ expression. $$ x^2 + x + C_x + y^2 - 3y + C_y = \frac{45}{2} + C_x + C_y$$ Next, we will find $C_x$ and $C_y$ to complete the square. $$ C_x = \left(\frac{1}{2}\right)^2 = \frac{1}{4} $$ $$ C_y = \left(\frac{-3}{2}\right)^2 = \frac{9}{4} $$ Substituting $C_x=\frac{1}{4}$ and $C_y=\frac{9}{4}$ back into the equation we have \begin{align*} x^2 + x + C_x + y^2 - 3y + C_y & = \frac{45}{2} + C_x + C_y\\ x^2 + x + \frac{1}{4} + y^2 - 3y + \frac{9}{4} & = \frac{45}{2} + \frac{1}{4} + \frac{9}{4}\\ \left(x+\frac{1}{2}\right)^2 + \left(y-\frac{3}{2}\right)^2 & = 25 \end{align*} Therefore, the center of the graph is $(-\frac{1}{2},\frac{3}{2})$ and the radius is $r=5$. Remember the standard form is $(x-h)^2+(y-k)^2=r^2$. We can rewrite our result as follows to identify the center and radius clearly: \begin{align*} \left(x+\frac{1}{2}\right)^2 + \left(y-\frac{3}{2}\right)^2 & = 25\\ \left(x-(-\frac{1}{2})\right)^2 + \left(y-\frac{3}{2}\right)^2 & = 5^2 \end{align*} ::: :::: ::::{prf:example} :label: genSndCircle Given $x^2+y^2+6x+8y+9=0$. Rewrite the equation in the form $(x-h)^2+(y-k)^2=r^2$ then find the center and radius of the resulting circle. :::{dropdown} Solution: First, we will set up the completing the square: $$x^2 + 6x + C_x + y^2 + 8y + C_y = -9 + C_x + C_y$$ Next, we will find $C_x$ and $C_y$. $$C_x = \left(\frac{6}{2}\right)^2 = (3)^2 = 9$$ and $$C_y=\left(\frac{8}{2}\right)^2 = (4)^2 = 16$$ Substituting those values we have: \begin{align*} x^2 + 6x + 9 + y^2 + 8y + 16 & = -9 + 9 + 16\\ (x+3)^2 + (y+4)^2 & = 16 \end{align*} Therefore, the center of the circle is $(-3,-4)$ and the radius is $r=4$. ::: ::::