# Section 2.6 ## Continuity :::{prf:definition} :label: continuity A function is continuous over an interval of its domain if its hand-drawn graph over that interval can be sketched without lifting the pencil from the paper. ::: ## Basic Graphs and Information :::{prf:definition} Identity Function :label: idFunction Identity Function: $f(x)=x$. * Domain is $\mathbb{R}$ or $(-\infty,\infty)$. * Range is $\mathbb{R}$ or $(-\infty,\infty)$. * Continuous everywhere or $(-\infty,\infty)$. * Increasing everywhere or $(-\infty,\infty)$. * ![Graph of the identity function](images/identityFunctionGraph.png) ::: :::{prf:definition} Squaring Function :label: sqrFunction Squaring Function: $f(x)=x^2$. * Domain is $\mathbb{R}$ or $(-\infty,\infty)$. * Range is $[0,\infty)$. * Contiuous everywhere or $(-\infty,\infty)$. * Decreasing on $(-\infty,0)$. * Increasing on $(0,\infty)$. * ![Graph of the squaring function](images/sqrFunctionGraph.png) ::: :::{plot} images/sqrFunctionPlot.py ::: :::{prf:definition} Cubing Function :label: cubFunction Cubing Function: $f(x)=x^3$ * Domain is $\mathbb{R}$ or $(-\infty,\infty)$. * Range is $\mathbb{R}$ or $(-\infty,\infty)$. * Continuous everywhere or $(-\infty,\infty)$. * Increasing everywhere or $(-\infty,\infty)$. * ![Graph of the cubing function](images/cubFunctionGraph.png) ::: :::{prf:definition} Square Root Function :label: sqrtFunction Square Root Function: $f(x)=\sqrt{x}$. * Domain is $[0,\infty)$. * Range is $[0,\infty)$. * Continuous on $[0,\infty)$. * Increasing on $(0,\infty)$. * ![Graph of the square root function](images/sqrtFunctionGraph.png) ::: :::{prf:definition} Cube Root Function :label: cbrtFunction Cube Root Function: $f(x)=\sqrt[3]{x}$ * Domain is $\mathbb{R}$ or $(-\infty,\infty)$. * Range is $\mathbb{R}$ or $(-\infty,\infty)$. * Continuous everywhere or $(-\infty,\infty)$. * Increasing everywhere or $(-\infty,\infty)$. * ![Graph fo the cube root function](images/cbrtFunctionGraph.png) ::: :::{prf:definition} Absolute Value Function :label: absFunction Absolute Value Function: $f(x)=|x|$. * Domain is $\mathbb{R}$ or $(-\infty,\infty)$. * Range is $[0,\infty)$. * Continuous everywhere or $(-\infty,\infty)$. * Decreasing on $(-\infty,0)$. * Increasing on $(0,\infty)$. * ![Graph of the the absolute value function](images/absFunctionGraph.png) :::