# Section 3.3 ## Factor Theorem and Rational Zero Theorem :::{prf:theorem} Factor Theorem :label: factorThm For any polynomial $f(x)$, $x-k$ is a factor of $f(x)$ if and only if $f(k)=0$. ::: :::{prf:theorem} Rational Zero Theorem :label: ratZeroThm Let $f(x)$ be a polynomial function $$f(x)=a_nx^n+a_{n-1}x^{n-1}+\dots +a_1x+a_0$$ If $f(\frac{p}{q})=0$, then $p$ is proportional to $a_0$ and $q$ is proportional to $a_n$. ::: From the previous theorem, it is important to remember that it is $\frac{p}{q}$ where $p$ is associated with $a_0$ (the constant term) and $q$ is associated with $a_n$ (the leading coefficient). ### Example(s) ::::{prf:example} :label: zeroExam1 Let $f(x)=18x^6-21x^5-49x^4+21x^3+35x^2-4$. List all possible rational zeros (or roots). :::{dropdown} Solution: Remember $p$ is associated with the constant value, $-4$. Also, $q$ is associated with the leading coefficient, $18$. Next, we will list all the factors of for $p$ and $q$. $$p=-4:\pm 1, \pm 2, \pm 4$$ $$q=18: \pm 1, \pm 2, \pm 3, \pm 6, \pm 9, \pm 18$$ Next, we will list all the possible rational zeros with redundant ratios. \begin{alignat*}{3} \pm\frac{1}{1}, & \pm\frac{1}{2}, & \pm\frac{1}{3}, & \pm\frac{1}{6}, & \pm\frac{1}{9}, & \pm\frac{1}{18},\\ \pm\frac{2}{1}, & \pm\frac{2}{2}, & \pm\frac{2}{3}, & \pm\frac{2}{6}, & \pm\frac{2}{9}, & \pm\frac{2}{18},\\ \pm\frac{4}{1}, & \pm\frac{4}{2}, & \pm\frac{4}{3}, & \pm\frac{4}{6}, & \pm\frac{4}{9}, & \pm\frac{4}{18} \end{alignat*} Eliminating redundancy we have the following as the possible rational roots. $$\pm 1, \pm 2, \pm 4, \pm \frac{1}{2},\pm \frac{1}{3},\pm \frac{1}{6},\pm \frac{1}{9},\pm \frac{1}{18}$$ $$\pm \frac{2}{3},\pm \frac{2}{9},\pm \frac{4}{3}, \pm \frac{4}{9}$$ ::: Factor $f(x)$ into products of linear binomials. :::{dropdown} Solution: From the list of possible rational zeros, we will do synthetic division. We will first try $x=1$ (or $k=1$). After synthetic division we will discover $f(1)=0$ and $q_1(x)=18x^5-3x^4-52x^3-31x^2+4x+4$. That is, \begin{align*} f(x) & = (x-1)q_1(x)\\ & = (x-1)(18x^5-3x^4-52x^3-31x^2+4x+4) \end{align*} Next, we will do synthetic division on $q_1(x)$ using $k=-1$. We will get $q_1(-1)=0$ and $q_2(x)=18x^4-21x^3-31x^2+4$. That is, \begin{align*} f(x) & = (x-1)q_1(x)\\ & = (x-1)\left((x+1)q_2(x)\right)\\ & = (x-1)(x+1)(18x^4-21x^3-31x^2+4) \end{align*} Next, we will do synthetic division on $q_2(x)$ using $k=2$. We will get $q_2(2)=0$ and $q_3(x)=18x^3+15x^2-x-2$. That is, \begin{align*} f(x) & = (x-1)(x+1)q_2(x)\\ & = (x-1)(x+1)\left((x-2)q_3(x)\right)\\ & = (x-1)(x+1)(x-2)(18x^3+15x^2-x-2) \end{align*} Next, we will do synthetic division on $q_3(x)$ using $k=-2$. We will get $q_3(-2)=-84$. This means $x=-2$ is not a zero of the original function. We then move down the list of possible rational zeros. We will find \begin{align*} q_3(4) & = 1386\\ q_3(-4) & = -910\\ q_3(\frac{1}{2})) & = \frac{7}{2}\\ q_3(-\frac{1}{2})) & = 0 \end{align*} We finally discover that $q_3(-\frac{1}{2})=0$. This means we will use synthetic division on $q_3(x)$ with $k=-\frac{1}{2}$. We will then get $q_4(x)=18x^2+6x-4$. That is, \begin{align*} f(x) & = (x-1)(x+1)(x-2)q_3(x)\\ & = (x-1)(x+1)(x-2)\left((x+\frac{1}{2})q_4(x)\right)\\ & = (x-1)(x+1)(x-2)(x+\frac{1}{2})(=18x^2+6x-4) \end{align*} To find the last factors we then factor $=18x^2+6x-4$. First, $18\cdot(-4)=-72$, $12\cdot (-6)=-72$, and $12-6=6$. With that information, we can begin to factor. \begin{align*} 18x^2+6x-4 & = 18x^2+12x-6x-4\\ & = 6x(3x+2)-2(3x+2)\\ & = (3x+2)(6x-2)\\ & = (6x-2)(3x+2)\\ & = 2(3x-1)(3x+2) \end{align*} Putting everything together we have: $$f(x)=2(x-1)(x+1)(x-2)(x+\frac{1}{2})(3x-1)(3x+2)$$ ::: List all the zeros for the function $f(x)$ :::{dropdown} Solution: Since we know $$f(x)=2(x-1)(x+1)(x-2)(x+\frac{1}{2})(3x-1)(3x+2)$$ The zeros of the function $f$ is: $1$, $-1$, $2$, $-\frac{1}{2}$, $\frac{1}{3}$, and $-\frac{2}{3}$. ::: :::: ## Fundamental Theorem of Algebra and Number of Zeros Theorem :::{prf:theorem} Fundamental Theorem of Algebra :label: FTA Every function defined by a polynomial of degree 1 or more has at least one complex root. ::: :::{prf:theorem} Number of Zeros Theorem :label: numberZerosThm A function defined by a polynomial of degree $n$ has at most $n$ distinct zeros. ::: :::{prf:definition} Multiplicity :label: multiplicity The number of times a zero occurs is called the multiplicity of the zero. ::: :::{prf:example} :label: multExam1 Let $f(x)=(x+1)^3(x+3)(x-2)^2$. We know that the function's zeros are $-1$, $-3$, and $2$. However, we can also say that $f$ has a zero at $x=-1$ with a multiplicity of $3$, $x=-3$ with a multiplicity of $1$, and $x=2$ with a multiplicity of $2$. The power of the individual factors determines the multiplicity. ::: ::::{prf:example} :label: multExam2 Find a polynomial of degree three with real coefficient, zeros at $x=-3$, $x=-2$, and $x=5$, and $f(-1)=6$. :::{dropdown} Solution: We know that with the zeros $$f(x)=a(x+3)(x+2)(x-5)$$ In order to find $a$ we use $f(-1)=6$. That is, solve the following equation. \begin{align*} a(-1+3)(-1+2)(-1-5) & = 6\\ a(2)(1)(-6) & = 6\\ a & = -\frac{6}{-12} = -\frac{1}{2} \end{align*} Therefore, $f(x)=-\frac{1}{2}(x+3)(x+2)(x-5)$. In expanded form, we have: $$f(x)=-\frac{1}{2} x^3 + \frac{19}{2} x + 15$$ ::: :::: ## Complex Numbers Remember $\sqrt{-1}=i$ and the following hold true. \begin{align*} i & = \sqrt{-1}\\ i^2 & = -1\\ i^3 & = -i\\ i^4 & = 1 \end{align*} :::{prf:definition} Complex Conjugate :label: complexConj Let $z=a+ib$ where $a$ and $b$ are real numbers and $i=\sqrt{-1}$. Then we say $\overline{z}=a-ib$ and $\overline{z}$ is the conjugate of $z$. ::: :::{prf:property} Conjugate Properties :label: complexConjProp Let $c$ and $d$ be complex numbers. Then * $\overline{c+d} = \overline{c}+\overline{d}$ * $\overline{c\cdot d} = \overline{c}\cdot\overline{d}$ * $\overline{c^n} = \left(\overline{c}\right)^n$ ::: :::{prf:theorem} Conjugate Zero Theorem :label: conjZeroThm If $f(x)$ defines a polynomial having **only real coefficients** and if $z=a+ib$ is a zero of $f(x)$, then $\overline{z}=a-ib$ is also a zero. ::: ::::{prf:example} :label: conjZeroExam1 If $f(x)=x^2-8x+25$. Find $f(4+i3)$ :::{dropdown} Solution: \begin{align*} f(4+i3) & = (4+i3)^2 - 8(4+i3) + 25\\ & = 7 + i24 - 32 - i24 + 25\\ & = 0 \end{align*} This means $x=4+i3$ is a zero for the function. ::: Since $f(4+i3)$ is ??. Find all the zeros for $f$. :::{dropdown} Solution: Since $x=4+i3$ is a zero by the Conjugate Zero Theorem we know $x=4-i3$ is also a zero. That is, \begin{align*} f(4-i3) & = (4-i3)^2 - 8(4-i3)+25\\ & = 7-i24-32+i24+25\\ & = 0 \end{align*} Therefore, the zeros for $f$ is $x=4+i3$ and $x=4-i3$. ::: :::: ::::{prf:example} :label: conjZeroExam2 Find the polynomial with the least degree having only real coefficient and zeros $x=-4$ and $x=3-i$. :::{dropdown} Solution: Since the polynomial has all real coefficients and $x=3-i$ is a zero by the conjugate zero theorem. Since $x=-4$, $x=3-i$, and $x=3+i$ are the roots we have $$f(x)=(x-(-4))(x-(3-i))(x-(3+i))$$ If we distribute we have: $$f(x)= x^3 -2x^2 -14x +40$$ ::: :::: ::::{prf:example} :label: conjZeroExam3 Given $f(2+i)=0$, find all the zeros for the function $f(x)=x^4-x^3-17x^2+55x-50$. Since we know $f(2+i)=0$ we have the following from polynomial long division (using synthetic division). :::{dropdown} Solution: $$ f(x) = (x-(2+i))(x^3 + (1+i)x^2 + (-16+3i)x + (20-i10))$$ ::: Next, using conjugate zero theorem we know $f(2-i)=0$. Using synthetic division we know. :::{dropdown} Solution: $$ f(x)= (x-(2+i))(x-(2-i))(x^2+3x-10)$$ ::: Next, using the remaining factor: $x^2+3x-10$ we can find the remaining zeros. :::{dropdown} Solution: $$x^2+3x-10=(x+5)(x-2)$$ and $x=-5$, $x=2$ are the last zeros. ::: With all the previous work we know the zeros for $f(x)=x^4-x^3-17x^2+55x-50$ is $x=\{2,-5,2+i,2-i\}$. ::::