# Section 4.2
$$a\times n=\underset{n\text{ amount of times}}{\underbrace{a+a+\,\dots\,+a}}$$
$$a^{n}=\underset{n\text{ amount of times}}{\underbrace{a\cdot a\cdot\,\dots\,\cdot a}}$$
$$a^{n}\cdot a^{m}=\underset{n+m\text{ amount of times}}{\underbrace{\left(\underset{n\text{ amount of times}}{\underbrace{a\cdot a\cdot\,\dots\,\cdot a}}\right)\cdot\left(\underset{m\text{ amount of times}}{\underbrace{a\cdot a\cdot\,\dots\,\cdot a}}\right)}}=a^{m+n}$$
\begin{align*}
\left(a^{m}\right)^{n} & =a^{m}\cdot a^{m}\cdot\,\dots\,\cdot a^{m}\\
& =\underset{m+m+\dots+m=nm\text{ amount of times}}{\underbrace{\left(\underset{m\text{ amount of times}}{\underbrace{a\cdot a\cdot\,\dots\,\cdot a}}\right)\cdot\left(\underset{m\text{ amount of times}}{\underbrace{a\cdot a\cdot\,\dots\,\cdot a}}\right)\cdot\,\dots\,\cdot\left(\underset{m\text{ amount of times}}{\underbrace{a\cdot a\cdot\,\dots\,\cdot a}}\right)}}\\
& =a^{nm}
\end{align*}

:::{prf:property} Law of Exponent
:label: lawExp
Given the previous equation we can see the following:
$$a^n\cdot a^m = a^{n+m}$$
This implies that $\left(a^m\right)^n=a^{m\cdot n}$.
We have seen that $a^{-n}=\frac{1}{a^n}$ and $a^0=1$ (but $a$ cannot be $0$).
This and previous equations imply $\frac{a^m}{a^n}=a^{m-n}$.
:::
:::{prf:example}
:label: lawExpExam1
Show $\frac{a^m}{a^n}=a^{m-n}$.
:::{dropdown} "Proof:"
\begin{align*}
\frac{a^{m}}{a^{n}} & =a^{m}\cdot a^{-n}\text{ (since $\frac{1}{a^{n}}=a^{-n}$)}\\
& =a^{m-n}\text{ (since $a^{m}\cdot a^{n}=a^{m+n}$)}
\end{align*}
:::
::::
Something to remember when it comes to the base of the exponent.
$$ -2^2\ne (-2)^2 $$
:::{prf:property}
:label: radicalExp
Let $n$ be a natural number.
$$\sqrt[n]{x} = x^{\frac{1}{n}}$$
:::
When it comes to the exponential equation we have the following.
:::{prf:property}
:label: expEquation
The equation $a^m=a^n$ if and only if $m=n$.
:::
We are familiar with linear growth.
$$2,4,6,8,...$$
The first term is $a_1=2$, second term is $a_2=4$, and so on. The $n^{\text{th}}$ term is? The answer would be $a_n=2n$. This would be similar to $f(x)=2x$ where the domain is all real numbers instead of all natural numbers. The function would be called a linear function.
Next, we consider exponential growth.
$$2,4,8,16,32,...$$
The first term is $a_1=2$, second term is $a_2=4$, third term is $a_3=8$, and so on. The $n^{\text{th}}$ term is $a_n=2^n$. This would be similar to $f(x)=2^x$ where the domain is all real numbers instead of all natural numbers. The function would be called an exponential function.
:::{prf:definition}
:label: expFunc
If $a>0$ and $a\ne1$ then the exponential function base $a$ is
$$f(x)=a^x$$
* The domain of $f$ is the set of all real numbers.
(Consider $2^x$ what $x$ value would case $2^x<0$. Answer: there isn't a real number that would cause this.)
* The range of $f$ is the interval $(0\infty)$.
* The function $f$ is a continuous function over its domain.
* If $a>1$, then $f$ is increasing on its domain.
* If $01$ we have:

The graph of $f(x)=a^x$ where $0