# Section 4.2 $$a\times n=\underset{n\text{ amount of times}}{\underbrace{a+a+\,\dots\,+a}}$$ $$a^{n}=\underset{n\text{ amount of times}}{\underbrace{a\cdot a\cdot\,\dots\,\cdot a}}$$ $$a^{n}\cdot a^{m}=\underset{n+m\text{ amount of times}}{\underbrace{\left(\underset{n\text{ amount of times}}{\underbrace{a\cdot a\cdot\,\dots\,\cdot a}}\right)\cdot\left(\underset{m\text{ amount of times}}{\underbrace{a\cdot a\cdot\,\dots\,\cdot a}}\right)}}=a^{m+n}$$ \begin{align*} \left(a^{m}\right)^{n} & =a^{m}\cdot a^{m}\cdot\,\dots\,\cdot a^{m}\\ & =\underset{m+m+\dots+m=nm\text{ amount of times}}{\underbrace{\left(\underset{m\text{ amount of times}}{\underbrace{a\cdot a\cdot\,\dots\,\cdot a}}\right)\cdot\left(\underset{m\text{ amount of times}}{\underbrace{a\cdot a\cdot\,\dots\,\cdot a}}\right)\cdot\,\dots\,\cdot\left(\underset{m\text{ amount of times}}{\underbrace{a\cdot a\cdot\,\dots\,\cdot a}}\right)}}\\ & =a^{nm} \end{align*} ![demo neg exponent](images/negExp.png) :::{prf:property} Law of Exponent :label: lawExp Given the previous equation we can see the following: $$a^n\cdot a^m = a^{n+m}$$ This implies that $\left(a^m\right)^n=a^{m\cdot n}$. We have seen that $a^{-n}=\frac{1}{a^n}$ and $a^0=1$ (but $a$ cannot be $0$). This and previous equations imply $\frac{a^m}{a^n}=a^{m-n}$. ::: :::{prf:example} :label: lawExpExam1 Show $\frac{a^m}{a^n}=a^{m-n}$. :::{dropdown} "Proof:" \begin{align*} \frac{a^{m}}{a^{n}} & =a^{m}\cdot a^{-n}\text{ (since $\frac{1}{a^{n}}=a^{-n}$)}\\ & =a^{m-n}\text{ (since $a^{m}\cdot a^{n}=a^{m+n}$)} \end{align*} ::: :::: Something to remember when it comes to the base of the exponent. $$ -2^2\ne (-2)^2 $$ :::{prf:property} :label: radicalExp Let $n$ be a natural number. $$\sqrt[n]{x} = x^{\frac{1}{n}}$$ ::: When it comes to the exponential equation we have the following. :::{prf:property} :label: expEquation The equation $a^m=a^n$ if and only if $m=n$. ::: We are familiar with linear growth. $$2,4,6,8,...$$ The first term is $a_1=2$, second term is $a_2=4$, and so on. The $n^{\text{th}}$ term is? The answer would be $a_n=2n$. This would be similar to $f(x)=2x$ where the domain is all real numbers instead of all natural numbers. The function would be called a linear function. Next, we consider exponential growth. $$2,4,8,16,32,...$$ The first term is $a_1=2$, second term is $a_2=4$, third term is $a_3=8$, and so on. The $n^{\text{th}}$ term is $a_n=2^n$. This would be similar to $f(x)=2^x$ where the domain is all real numbers instead of all natural numbers. The function would be called an exponential function. :::{prf:definition} :label: expFunc If $a>0$ and $a\ne1$ then the exponential function base $a$ is $$f(x)=a^x$$ * The domain of $f$ is the set of all real numbers. (Consider $2^x$ what $x$ value would case $2^x<0$. Answer: there isn't a real number that would cause this.) * The range of $f$ is the interval $(0\infty)$. * The function $f$ is a continuous function over its domain. * If $a>1$, then $f$ is increasing on its domain. * If $01$ we have: ![The graph of an exponential function where the base if greater than 1](images/agreaterone.png) The graph of $f(x)=a^x$ where $0