# Section 4.4 Remember: :::{prf:definition} :label: basicLogNote * The common logarithm is $\log_{10}(x)=\log(x)$. * The natural logarithm is $\log_{e}(x)=\ln(x)$. ::: :::{prf:theorem} Change Base Formula :label: changeBase For any positive real number $x$, $a$, and $b$ where $a\ne 1$ and $b\ne 1$, the following holds true. $$\log_a(x)=\frac{\log_b(x)}{\log_a(x)}$$ ::: Consider, $2^x=7$ if and only if $\log_2(7)=x$. However, most simple scientific calculators are not able to compute this number. With the change base formula, we have: $$\log_2(7)=\frac{\ln(7)}{\ln(2)}$$ That is, $\log_2(7)\approx 2.80735$ and $\frac{\ln(7)}{\ln(2)} \approx 2.80735$.