# Section 5.8 The number $1$ is the multiplicative identity since $$ 1\cdot a=a\cdot1=a $$ For matrices we have the same identity. $I_{2}$ represents the $2\times2$ identity matrix and is defined as $$ I_{2}=\left[\begin{matrix}1 & 0\\ 0 & 1 \end{matrix}\right] $$ For example: Let $A=\left[\begin{matrix}-5 & 2\\ 3 & 4 \end{matrix}\right]$. Compute $A\cdot I_{2}$ and $I_{2}\cdot A$. \begin{align*} \left[\begin{matrix}-5 & 2\\ 3 & 4 \end{matrix}\right]\cdot\left[\begin{matrix}1 & 0\\ 0 & 1 \end{matrix}\right] & =\left[\begin{matrix}(-5)(1)+(2)(0) & (-5)(0)+(2)(1)\\ (3)(1)+(4)(0) & (3)(0)+(4)(1) \end{matrix}\right]\\ & =\left[\begin{matrix}-5 & 2\\ 3 & 4 \end{matrix}\right] \end{align*} and \begin{align*} \left[\begin{matrix}1 & 0\\ 0 & 1 \end{matrix}\right]\cdot\left[\begin{matrix}-5 & 2\\ 3 & 4 \end{matrix}\right] & =\left[\begin{matrix}(1)(-5)+(0)(3) & (1)(2)+(0)(4)\\ (0)(-5)+(1)(3) & (0)(2)+(1)(4) \end{matrix}\right]\\ & =\left[\begin{matrix}-5 & 2\\ 3 & 4 \end{matrix}\right] \end{align*} :::{prf:definition} $n\times n$ Identity Matrix :label: identityMatrix The $n\times n$ identity matrix is $I_{n}$ and is defined as $$ I_{n}=\left[\begin{matrix}1 & 0 & \cdots & 0\\ 0 & 1 & \cdots & 0\\ \vdots & \vdots & a_{ij} & \vdots\\ 0 & 0 & \cdots & 1 \end{matrix}\right]. $$ The element $a_{ij}=1$ when $i=j$ (the diagonal elements), and $a_{ij}=0$ otherwise. ::: We say $\frac{1}{a}$ is the multiplicative inverse of $a$ provided $a\ne0$. That is, $$ \frac{1}{a}\cdot a=a\cdot\frac{1}{a}=1. $$ :::{prf:definition} Multiplicative Inverse of Matrices :label: multInverseMatrix We say $A^{-1}$ is the multiplicative inverse matrix of matrix $A$ if and only if $$ AA^{-1}=A^{-1}A=I_{n} $$ ::: ::::{prf:example} :label: findInverseExam1 Find $B^{-1}$ if $$ B=\left[\begin{matrix}-4 & 2 & 0\\ 1 & -1 & 2\\ 0 & 1 & 4 \end{matrix}\right] $$ :::{dropdown} Solution: First, we will construct the augmented matrix $$ \left[\begin{matrix}-4 & 2 & 0 & 1 & 0 & 0\\ 1 & -1 & 2 & 0 & 1 & 0\\ 0 & 1 & 4 & 0 & 0 & 1 \end{matrix}\right] $$ then perform reduce row echelon form on this new matrix \begin{align*} \left[\begin{matrix}-4 & 2 & 0 & 1 & 0 & 0\\ 1 & -1 & 2 & 0 & 1 & 0\\ 0 & 1 & 4 & 0 & 0 & 1 \end{matrix}\right] & \to_{-\frac{1}{4}\times R_{1}}\left[\begin{matrix}1 & -\frac{1}{2} & 0 & -\frac{1}{4} & 0 & 0\\ 1 & -1 & 2 & 0 & 1 & 0\\ 0 & 1 & 4 & 0 & 0 & 1 \end{matrix}\right]\\ & \to_{(-1)\times R_{1}+R_{2}}\left[\begin{matrix}1 & -\frac{1}{2} & 0 & -\frac{1}{4} & 0 & 0\\ 0 & -\frac{1}{2} & 2 & \frac{1}{4} & 1 & 0\\ 0 & 1 & 4 & 0 & 0 & 1 \end{matrix}\right]\\ & \to_{-2\times R_{2}}\left[\begin{matrix}1 & -\frac{1}{2} & 0 & -\frac{1}{4} & 0 & 0\\ 0 & 1 & -4 & -\frac{1}{2} & -2 & 0\\ 0 & 1 & 4 & 0 & 0 & 1 \end{matrix}\right]\\ & \to_{(-1)\times R_{2}+R_{3}}\left[\begin{matrix}1 & -\frac{1}{2} & 0 & -\frac{1}{4} & 0 & 0\\ 0 & 1 & -6 & -\frac{1}{2} & -2 & 0\\ 0 & 0 & 8 & \frac{1}{2} & 2 & 1 \end{matrix}\right]\\ & \to_{\frac{1}{8}\times R_{3}}\left[\begin{matrix}1 & -\frac{1}{2} & 0 & -\frac{1}{4} & 0 & 0\\ 0 & 1 & -4 & -\frac{1}{2} & -2 & 0\\ 0 & 0 & 1 & \frac{1}{16} & \frac{1}{4} & \frac{1}{8} \end{matrix}\right]\\ & \to_{4\times R_{3}+R_{2}}\left[\begin{matrix}1 & -\frac{1}{2} & 0 & -\frac{1}{4} & 0 & 0\\ 0 & 1 & 0 & -\frac{1}{4} & -1 & \frac{1}{2}\\ 0 & 0 & 1 & \frac{1}{16} & \frac{1}{4} & \frac{1}{8} \end{matrix}\right]\\ & \to_{\frac{1}{2}\times R_{2}+R_{1}}\left[\begin{matrix}1 & 0 & 0 & -\frac{3}{4} & -\frac{1}{2} & \frac{1}{4}\\ 0 & 1 & 0 & -\frac{1}{4} & -1 & \frac{1}{2}\\ 0 & 0 & 1 & \frac{1}{16} & \frac{1}{4} & \frac{1}{8} \end{matrix}\right] \end{align*} Therefore, $B^{-1}=\left[\begin{matrix}-\frac{3}{4} & -\frac{1}{2} & \frac{1}{4}\\ -\frac{1}{4} & -1 & \frac{1}{2}\\ \frac{1}{16} & \frac{1}{4} & \frac{1}{8} \end{matrix}\right]$. ::: :::: ::::{prf:example} :label: multInverseExam2 Find $A^{-1}$, if possible, given that $$ A=\left[\begin{matrix}4 & -2 & 5\\ 0 & 1 & 0\\ -8 & 4 & -10 \end{matrix}\right]. $$ :::{dropdown} Solution: First, we construct the augmented matrix and the perform reduced row echelon form \begin{align*} \left[\begin{matrix}4 & -2 & 5 & 1 & 0 & 0\\ 0 & 1 & 0 & 0 & 1 & 0\\ -8 & 4 & -10 & 0 & 0 & 1 \end{matrix}\right] & \to_{\frac{1}{4}\times R_{1}}\left[\begin{matrix}1 & -\frac{1}{2} & \frac{5}{4} & \frac{1}{4} & 0 & 0\\ 0 & 1 & 0 & 0 & 1 & 0\\ -8 & 4 & -10 & 0 & 0 & 1 \end{matrix}\right]\\ & \to_{8\times R_{1}+R_{3}}\left[\begin{matrix}1 & -\frac{1}{2} & \frac{5}{4} & \frac{1}{4} & 0 & 0\\ 0 & 1 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 2 & 0 & 1 \end{matrix}\right] \end{align*} Since $a_{31}=a_{32}=a_{33}=0$ we will not be able to reach the desired transformation. Therefore, there does not exists an $A^{-1}$. ::: :::: :::{prf:theorem} Solving Matrix Equation :label: inverseApplication Suppose $A$ is an $n\times n$ matrix with inverse $A^{-1}$, $X$ is an $n\times1$ matrix of variables, and $B$ is an $n\times1$ matrix. The matrix equation $$ AX=B $$ has the solution $$ X=A^{-1}B. $$ ::: ::::{prf:example} :label: systemMatrixExam1 Solve the system $$ \begin{cases} 2x-3y & =4\\ x+5y & =2 \end{cases} $$ :::{dropdown} Solution: First, we will write the system in matrix equation form $$ \left[\begin{matrix}2 & -3\\ 1 & 5 \end{matrix}\right]\cdot\left[\begin{matrix}x\\ y \end{matrix}\right]=\left[\begin{matrix}4\\ 2 \end{matrix}\right] $$ where $A=\left[\begin{matrix}2 & -3\\ 1 & 5 \end{matrix}\right]$, $X=\left[\begin{matrix}x\\ y \end{matrix}\right]$, and $B=\left[\begin{matrix}4\\ 2 \end{matrix}\right]$. Next, we want to find $A^{-1}$ \begin{align*} \left[\begin{matrix}2 & -3 & 1 & 0\\ 1 & 5 & 0 & 1 \end{matrix}\right] & \to_{\frac{1}{2}\times R_{1}}\left[\begin{matrix}1 & -\frac{3}{2} & \frac{1}{2} & 0\\ 1 & 5 & 0 & 1 \end{matrix}\right]\\ & \to_{(-1)\times R_{1}+R_{2}}\left[\begin{matrix}1 & -\frac{3}{2} & \frac{1}{2} & 0\\ 0 & \frac{13}{2} & -\frac{1}{2} & 1 \end{matrix}\right]\\ & \to_{\frac{2}{13}\times R_{2}}\left[\begin{matrix}1 & -\frac{3}{2} & \frac{1}{2} & 0\\ 0 & 1 & -\frac{1}{13} & \frac{2}{13} \end{matrix}\right]\\ & \to_{\frac{3}{2}\times R_{2}+R_{1}}\left[\begin{matrix}1 & 0 & \frac{5}{13} & \frac{3}{13}\\ 0 & 1 & -\frac{1}{13} & \frac{2}{13} \end{matrix}\right]\implies A^{-1}=\left[\begin{matrix}\frac{5}{13} & \frac{3}{13}\\ -\frac{1}{13} & \frac{2}{13} \end{matrix}\right]. \end{align*} Using the solution of the matrix equation theorem we have \begin{align*} X & =A^{-1}B\\ & =\left[\begin{matrix}\frac{5}{13} & \frac{3}{13}\\ -\frac{1}{13} & \frac{2}{13} \end{matrix}\right]\cdot\left[\begin{matrix}4\\ 2 \end{matrix}\right]\\ & =\left[\begin{matrix}\frac{5}{13}\cdot 4+\frac{3}{13}\cdot 2\\ -\frac{1}{13}\cdot 4+\frac{2}{13}\cdot 2 \end{matrix}\right]\\ & =\left[\begin{matrix}2\\ 0 \end{matrix}\right]=\left[\begin{matrix}x\\ y \end{matrix}\right]=X \end{align*} which means the solution set of the system is $\{(2,0)\}$. ::: :::: ::::{prf:example} :label: systemMatrixExam2 Solve the system $$ \begin{cases} -4x+2y & =12\\ x-y+2z & =7\\ y+4z & =20 \end{cases} $$ :::{dropdown} Solution: First, we write the system in matrix equation form $$ \left[\begin{matrix}-4 & 2 & 0\\ 1 & -1 & 2\\ 0 & 1 & 4 \end{matrix}\right]\cdot\left[\begin{matrix}x\\ y\\ z \end{matrix}\right]=\left[\begin{matrix}12\\ 7\\ 20 \end{matrix}\right] $$ where $A=\left[\begin{matrix}-4 & 2 & 0\\ 1 & -1 & 2\\ 0 & 1 & 4 \end{matrix}\right]$, $X=\left[\begin{matrix}x\\ y\\ z \end{matrix}\right]$, and $B=\left[\begin{matrix}12\\ 7\\ 20 \end{matrix}\right]$. Next, we will find $A^{-1}$ \begin{align*} \left[\begin{matrix}-4 & 2 & 0 & 1 & 0 & 0\\ 1 & -1 & 2 & 0 & 1 & 0\\ 0 & 1 & 4 & 0 & 0 & 1 \end{matrix}\right] & \to_{-\frac{1}{4}\times R_{1}}\left[\begin{matrix}1 & -\frac{1}{2} & 0 & -\frac{1}{4} & 0 & 0\\ 1 & -1 & 2 & 0 & 1 & 0\\ 0 & 1 & 4 & 0 & 0 & 1 \end{matrix}\right]\\ & \to_{(-1)\times R_{1}+R_{2}}\left[\begin{matrix}1 & -\frac{1}{2} & 0 & -\frac{1}{4} & 0 & 0\\ 0 & -\frac{1}{2} & 2 & \frac{1}{4} & 1 & 0\\ 0 & 1 & 4 & 0 & 0 & 1 \end{matrix}\right]\\ & \to_{-2\times R_{2}}\left[\begin{matrix}1 & -\frac{1}{2} & 0 & -\frac{1}{4} & 0 & 0\\ 0 & 1 & -4 & -\frac{1}{2} & -2 & 0\\ 0 & 1 & 4 & 0 & 0 & 1 \end{matrix}\right]\\ & \to_{(-1)\times R_{2}+R_{3}}\left[\begin{matrix}1 & -\frac{1}{2} & 0 & -\frac{1}{4} & 0 & 0\\ 0 & 1 & -4 & -\frac{1}{2} & -2 & 0\\ 0 & 0 & 8 & \frac{1}{2} & 2 & 1 \end{matrix}\right]\\ & \to_{\frac{1}{8}\times R_{3}}\left[\begin{matrix}1 & -\frac{1}{2} & 0 & -\frac{1}{4} & 0 & 0\\ 0 & 1 & -4 & -\frac{1}{2} & -2 & 0\\ 0 & 0 & 1 & \frac{1}{16} & \frac{1}{4} & \frac{1}{8} \end{matrix}\right]\\ & \to_{\frac{1}{2}\times R_{2}+R_{1}}\left[\begin{matrix}1 & 0 & -2 & -\frac{1}{2} & -1 & 0\\ 0 & 1 & -4 & -\frac{1}{2} & -2 & 0\\ 0 & 0 & 1 & \frac{1}{16} & \frac{1}{4} & \frac{1}{8} \end{matrix}\right]\\ & \to_{2\times R_{3}+R_{1}}\left[\begin{matrix}1 & 0 & 0 & -\frac{3}{8} & -\frac{1}{2} & \frac{1}{4}\\ 0 & 1 & -4 & -\frac{1}{2} & -2 & 0\\ 0 & 0 & 1 & \frac{1}{16} & \frac{1}{4} & \frac{1}{8} \end{matrix}\right]\\ & \to_{4\times R_{3}+R_{2}}\left[\begin{matrix}1 & 0 & 0 & -\frac{3}{8} & -\frac{1}{2} & \frac{1}{4}\\ 0 & 1 & 0 & -\frac{1}{4} & -1 & \frac{1}{2}\\ 0 & 0 & 1 & \frac{1}{16} & \frac{1}{4} & \frac{1}{8} \end{matrix}\right]\implies A^{-1}=\left[\begin{matrix}-\frac{3}{8} & -\frac{1}{2} & \frac{1}{4}\\ -\frac{1}{4} & -1 & \frac{1}{2}\\ \frac{1}{16} & \frac{1}{4} & \frac{1}{8} \end{matrix}\right] \end{align*} Using the solution of the matrix theorem we have \begin{align*} X & =A^{-1}B\\ & =\left[\begin{matrix}-\frac{3}{8} & -\frac{1}{2} & \frac{1}{4}\\ -\frac{1}{4} & -1 & \frac{1}{2}\\ \frac{1}{16} & \frac{1}{4} & \frac{1}{8} \end{matrix}\right]\cdot\left[\begin{matrix}12\\ 7\\ 20 \end{matrix}\right]\\ & =\left[\begin{matrix}-\frac{3}{8}\cdot 12+(-\frac{1}{2})\cdot 7+\frac{1}{4}\cdot 20\\ -\frac{1}{4}\cdot 12+(-1)\cdot 7+\frac{1}{2}\cdot 20\\ \frac{1}{16}\cdot 12+\frac{1}{4}\cdot 7+\frac{1}{8}\cdot 20 \end{matrix}\right]\\ & =\left[\begin{matrix}-3\\ 0\\ 5 \end{matrix}\right]=\left[\begin{matrix}x\\ y\\ z \end{matrix}\right]=X \end{align*} Therefore, the solution to the system is $\{(-3,0,5)\}$. ::: ::::