# Section 7.1 :::{prf:definition} Sequence :label: defSeq A finite sequence is a function that has a set of natural numbers of the form $\{1,2,3,...,n\}$ as its domain. An infinity sequence has the set of natural numbers as its domain. The general term of the sequence is usually denoted $a_{n}$. ::: ::::{prf:example} :label: seqExam1 Write the first five terms of the sequence $a_{n}=5n-2$. :::{dropdown} Solution: In this case the domain is $\{1,2,3,4,5\}$ and \begin{align*} a_{1} & =5(1)-2=3\\ a_{2} & =5(2)-2=8\\ a_{3} & =5(3)-2=13\\ a_{4} & =5(4)-2=18\\ a_{5} & =5(5)-2=23 \end{align*} So the sequence $\{a_{i}\}_{i=1}^{5}=\{3,8,13,18,23\}$. ::: :::: :::{prf:definition} Convergence and Divergence :label: defConDiv If the terms of an infinite sequence get closer and closer to some real number, the sequence is said to be convergent and to converge to that real number. A sequence that does not converge to any number is divergent. ::: The sequence $a_{n}=\frac{1}{n}$ is a convergent sequence and converges to $0$. The sequence $b_{n}=n^{2}$ is divergent and continue to get larger and larger without bound. ::::{prf:example} :label: findSeqExam1 If $a_{1}=2$ and $a_{n}=3\cdot a_{n-1}-1$ for $n\ge1$, then find the first five terms of the sequence $a_{n}$. :::{dropdown} Solution: We have \begin{align*} a_{1} & =2\\ a_{2} & =3a_{2-1}-1\\ & =3a_{1}-1\\ & =3(2)-1\\ & =5\\ a_{3} & =3(5)-1\\ & =14\\ a_{4} & =3(14)-1\\ & =41\\ a_{5} & =3(41)-1\\ & =122 \end{align*} ::: :::: :::{prf:definition} Series :label: defSeries A finite series is an expression of the form $$ S_{n}=a_{1}+a_{2}+\dots+a_{n}=\sum_{i=1}^{n}a_{i}. $$ An infinite series is an expression of the form $$ S_{\infty}=a_{1}+a_{2}+\dots=\sum_{i=1}^{\infty}a_{i}. $$ We say the letter $i$ is the index of the summation. ::: ::::{prf:example} :label: seriesExam1 Evaluate $$ \sum_{i=1}^{5}(i^{2}+i+1). $$ :::{dropdown} Solution: First we define $a_{i}=i^{2}+i+1$ and we want to find the first $5$ terms of the sequence. \begin{align*} a_{1} & =(1)^{2}+1+1=3\\ a_{2} & =(2)^{2}+(2)+1=7\\ a_{3} & =(3)^{2}+(3)+1=13\\ a_{4} & =(4)^{2}+(4)+1=21\\ a_{5} & =(5)^{2}+(5)+1=31 \end{align*} Next, we evaluate \begin{align*} \sum_{i=1}^{5}(i^{2}+i+1) & =\sum_{i=1}^{5}a_{i}\\ & =a_{1}+a_{2}+a_{3}+a_{4}+a_{5}\\ & =3+7+13+21+31\\ & =75 \end{align*} Therefore, $$ \sum_{i=1}^{5}(i^{2}+i+1)=75. $$ ::: :::: ::::{prf:example} :label: seriesExam2 Evaluate $\sum_{i=1}^{3}f(x_{i})\Delta x$ where $f(x)=\frac{1}{x}$; $x_{1}=1$ , $x_{2}=3$, $x_{3}=5$, and $\Delta x=2$. :::{dropdown} Solution: First, we will define $a_{i}=f(x_{i})\Delta x$ and we will find the first 3 terms of the sequence \begin{align*} a_{1} & =f(x_{1})\Delta x\\ & =f(1)(2)\\ & =\frac{1}{1}(2)\\ & =2\\ a_{2} & =f(x_{2})\Delta x\\ & =f(3)(2)\\ & =\frac{1}{3}\cdot2\\ & =\frac{2}{3}\\ a_{3} & =f(x_{3})\Delta x\\ & =f(5)(2)\\ & =\frac{1}{5}\cdot2\\ & =\frac{2}{5}\\ \sum_{i=1}^{3}f(x_{i})\Delta x & =f(x_{1})\Delta x+f(x_{2})\Delta x+f(x_{3})\Delta x\\ & =2+\frac{2}{3}+\frac{2}{5}\\ & =\frac{46}{15} \end{align*} Therefore, we have $$ \sum_{i=1}^{3}f(x_{i})\Delta x=\frac{46}{15}. $$ ::: :::: :::{prf:property} Summation Properties :label: sumProper If $a_{1}$, $a_{2}$, $a_{3}$, ..., $a_{n}$ and $b_{1}$, $b_{2}$, $b_{3}$, ..., $b_{n}$ are two sequences, and $c$ is a constant, then for every positive integer $n$, the following holds true. 1. $\sum_{i=1}^{n}c=cn$ 1. $\sum_{i=1}^{n}ca_{i}=c\sum_{i=1}^{n}a_{i}$ 1. $\sum_{i=1}^{n}(a_{i}+b_{i})=\sum_{i=1}^{n}a_{i}+\sum_{i=1}^{n}b_{i}$ 1. $\sum_{i=1}^{n}(a_{i}-b_{i})=\sum_{i=1}^{n}a_{i}-\sum_{i=1}^{n}b_{i}$ 1. $\sum_{i=1}^{n}i=\dfrac{n(n+1)}{2}$ 1. $\sum_{i=1}^{n}i^{2}=\dfrac{n(n+1)(2n+1)}{6}$ 1. $\sum_{i=1}^{n}i^{3}=\dfrac{n^{2}(n+1)^{2}}{4}$ ::: ::::{prf:example} :label: sumPropExam1 Evaluate $$ \sum_{i=1}^{10}(3i^{2}+5) $$ :::{dropdown} Solution: Here we will use the properties of summation \begin{align*} \sum_{i=1}^{10}(3i^{2}+5) & =\sum_{i=1}^{10}3i^{2}+\sum_{i=1}^{10}5\\ & =3\sum_{i=1}^{10}i^{2}+\sum_{i=1}^{10}5\\ & =3\cdot\frac{n(n+1)(2n+1)}{6}|_{n=10}+5n|_{n=10}\\ & =3\cdot\frac{(10)((10)+1)(2(10)+1)}{6}+5(10)\\ & =3\cdot385+50\\ & =1205 \end{align*} Therefore, $$ \sum_{i=1}^{10}(3i^{2}+5)=1205. $$ ::: ::::