# Section 1.3 :::{prf:theorem} :label: PythThm !['image of a right triangle labeled with a, b, and c'](images/rightTriangle.png) If a triangle is a right triangle, then $a^2+b^2=c^2$. If the sides of a triangle satisfy $a^2+b^2=c^2$, then the triangle is a right triangle. ::: !['distance between two points'](images/distanceFormula.png) By Pythagorean Thoerem we have the following distance forumla: $$d(A,B)=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$ !['image of a point on the xy axis associated with radius and angle'](images/polarCoord.png) From the image notice that $r=\sqrt{x^2+y^2}$. The following definition is associated with the above image showing a point in space with a radius and angle, $\theta$. :::{prf:definition} :label: trigDef1 Let $(x,y)$ be a point other than the origin on the terminal side of angle $\theta$ in standard position. The distance from the point to the origin is $r=\sqrt{x^2+y^2}$. The six trigonometric functions of $\theta$ are as follows. \begin{align*} \cos(\theta) & =\frac{x}{r} & \sin(\theta)=\frac{y}{r} & \tan(\theta)=\frac{y}{x}\text{ ($x\ne0$)}\\ \sec(\theta) & =\frac{r}{x} & \csc(\theta)=\frac{r}{y} & \cot(\theta)=\frac{x}{y}\text{ ($y\ne0$)} \end{align*} ::: ::::{prf:example} :label: solveSixTrig1 The terminal side of an angle $\theta$ in standard position passes through the point $(4,3)$. Find the values of the six trigonometric functions. :::{dropdown} Solution: In order to find the values of the six trig functions we need to know what $x$, $y$, and $r$ equals. We are given $x=4$ and $y=3$. To find $r$ we find the distance between the point $(4,3)$ and the origin, $(0,0)$. \begin{align*} r & = \sqrt{4^2 + 3^2}\\ & = \sqrt{16+9}\\ & = \sqrt{25}\\ & = 5 \end{align*} Therefore, we have $x=4$, $y=3$, and $r=5$. Using the previous definition we have: \begin{align*} \cos(\theta) & = \frac45 & \sin(\theta) & = \frac35 & \tan(\theta) & = \frac34\\ \sec(\theta) & = \frac54 & \csc(\theta) & = \frac53 & \cot(\theta) & = \frac43 \end{align*} ::: :::: The terminal side of an angle $0^{\circ}$ in standard position would pass through any point along the positive $x$-axis. The radius for this situation would then be $r=x$. Therefore, we have the following conclusion for evaluating the six trig functions when $\theta=0^{\circ}$. \begin{align*} \cos(0^{\circ}) & = \frac{x}{x}=1 & \sin(0^{\circ}) & = \frac{0}{x}=0 & \tan(0^{\circ}) & = \frac{0}{x}=0\\ \sec(0^{\circ}) & = 1 & \csc(0^{\circ}) & = \text{UND} & \cot(0^{\circ}) & = \text{UND} \end{align*} | $\theta$ | $\cos(\theta)$ | $\sin (\theta)$ | $\tan(\theta)$ | $\sec(\theta)$ | $\csc(\theta)$ | $\cot(\theta)$ | |---| --- | --- | --- | --- | --- | --- | | $0^{\circ}$ | 1 | 0 | 0 | 1 | UND | UND | | $90^{\circ}$ | 0 | 1 | UND | UND | 1 | 0 | | $180^{\circ}$ | -1 | 0 | 0 | -1 | UND | UND | | $270^{\circ}$ | 0 | -1 | UND | UND | -1 | 0 | | $360^{\circ}$ | 1 | 0 | 0 | 1 | UND | UND |