# Section 1.4 :::{prf:definition} Identities :label: idDef Identities are equations that are true for all values of the variables for which all expression are defined. ::: :::{prf:definition} Reciprocal Identities :label: recipID For all angles $\theta$ for which both functions are defined, the following hold true: \begin{align*} \sin (\theta) & = \frac{1}{\csc(\theta)} & \cos(\theta) & = \frac{1}{\sec(\theta)} & \tan(\theta) & = \frac{1}{\cot(\theta)}\\ \csc(\theta) & = \frac{1}{\sin(\theta)} & \sec(\theta) & = \frac{1}{\cos(\theta)} & \cot(\theta) & = \frac{1}{\tan(\theta)} \end{align*} ::: Remember in general $f(5x)\ne 5f(x)$. This is also true for trig functions. $$\cos(2x) \ne 2\cos(x)$$ Similarly, $$\cos(x+y) \ne \cos(x)+\sin(y)$$ The signs for the sine and cosine function are as follows. !['image of the sign for sine and cosine'](images/signTrigValues.png) Let $k$ be any integer. |Trig Function | Domain | Range | |---|:-:|:-:| |$\sin(\theta)$,$\cos(\theta)$| $\mathbb{R}$|$[-1,1]$| |$\tan(\theta)$| $x\ne \frac{\pi}{2}+\pi k$|$\mathbb{R}$| |$\cot(\theta)$| $x\ne \pi + \pi k$|$\mathbb{R}$| |$\sec(\theta)$| $x\ne \frac{\pi}{2} + \pi k$|$(-\infty,-1]\cup[1,\infty)$| |$\csc(\theta)|$x\ne \pi + \pi k$|$(-\infty,-1]\cup[1,\infty)$| :::{prf:theorem} Quotient Identities :label: QuotId For all angles $\theta$ for which the denominators are not zero, the follow are true. \begin{align*} \frac{\sin(\theta)}{\cos(\theta)} & = \tan(\theta) & \frac{\cos(\theta)}{\sin(\theta)} & = \cot(\theta) \end{align*} ::: :::{prf:theorem} Pythagorean Identities :label: trigPythThm For all angles $\theta$ for which the function values are defined, the following are true. $$\sin^2(\theta)+\cos^2(\theta) = 1$$ $$\tan^2(\theta)+1=\sec^2(\theta)$$ $$\cot^2(\theta)+1=\csc^2(\theta)$$ :::