# Section 2.1 Given the following triangle, we have the right-triangle-based definition of trigonometric functions. !['image of a right triangle with opposite, adjacent, and hypoth labeled'](images/sohcahtoa.png) :::{prf:definition} :label: rightTriTrigDef Let $A$ represent any acute angle in standard position. Then \begin{align*} \sin\theta & =\dfrac{y}{r}=\dfrac{\text{side opposite A}}{\text{hypotenuse}} & \cos\theta & =\dfrac{x}{r}=\dfrac{\text{side adjacent to A}}{\text{hypotenuse}} & \tan\theta & =\dfrac{y}{x}=\dfrac{\text{side opposite A}}{\text{side adjacent A}}\\ \csc\theta & =\dfrac{r}{y}=\dfrac{\text{hypotenuse}}{\text{side opposite A}} & \sec\theta & =\dfrac{r}{x}=\dfrac{\text{hypotenuse}}{\text{side adjacent to A}} & \cot\theta & =\dfrac{x}{y}=\dfrac{\text{side adjacent to A}}{\text{side opposite A}} \end{align*} ::: :::{prf:theorem} Cofunction Identities :label: coFuncId Let $\theta$ represent any acute angle. Then the following hold true: \begin{align*}\sin\theta & =\cos(90^{\circ}-\theta) & \cos\theta & =\sin(90^{\circ}-\theta) & \tan\theta & =\cot(90^{\circ}-\theta)\\ \csc\theta & =\sec(90^{\circ}-\theta) & \sec\theta & =\csc(90^{\circ}-\theta) & \cot\theta & =\tan(90^{\circ}-\theta) \end{align*} ::: The following is a $30^{\circ}$ - $60^{\circ}$ - $90^{\circ}$ right triangle which will be used to define the following: !['image of a 30-60-90 right triangle with angle measurements and length measurements'](images/306090.png) \begin{align*} \cos(30^{\circ}) & = \frac{\sqrt{3}}{2} & \sin(30^{\circ}) & = \frac{1}{2}\\ \cos(60^{\circ}) & = \frac{1}{2} & \sin(60^{\circ}) & = \frac{\sqrt{3}}{2} \end{align*} The following is a $45^{\circ}$ - $45^{\circ}$ - $90^{\circ}$ right triangle which will be used to define the following: !['image of 45-45-90 right triangle with angle measurements and length measurements'](images/454590.png) \begin{align*} \cos(45^{\circ}) & = \frac{\sqrt{2}}{2} & \sin(45^{\circ}) & = \frac{\sqrt{2}}{2} \end{align*} Therefore, from last chapter and this section we have the following: |$\theta$|$\cos(\theta)$|$\sin(\theta)$| |:-:|:-:|:-:| |$0^{\circ}$|$1$|$0$| |$30^{\circ}$|$\frac{\sqrt{3}}{2}$|$\frac{1}{2}$| |$45^{\circ}$|$\frac{\sqrt{2}}{2}$|$\frac{\sqrt{2}}{2}$| |$60^{\circ}$|$\frac{1}{2}$|$\frac{\sqrt{3}}{2}$| |$90^{\circ}$|$0$|$1$| Using the reciprocal and quotient identities we know know the values of all six trig functions at 0, 30,45, 60, and 90 degrees.