# Section 2.2 :::{prf:definition} :label: refAng A reference angle for $\theta$, is denoted $\theta'$, is the acute angle made by the terminal side of the angle $\theta$ and the $x$-axis. ::: ::::{prf:example} :label: refExam Find the reference angle for the following angle measures. If $\theta = 170^{\circ}$, find $\theta'$. :::{dropdown} Solution: $$\theta' = 180-170=10$$ Therefore, $\theta'=10^{\circ}$. ::: If $\theta = 200^{\circ}$, find $\theta'$. :::{dropdown} Solution: $$\theta'=200-180 = 20$$ Therefore, $\theta'=20^{\circ}$ ::: If $\theta = 400^{\circ}$, find $\theta'$. :::{dropdown} Solution: First, we must find the coterminal angle: $$\theta_c=400-360=40$$ Next, we find the reference angle for $40^{\circ}$. The reference angle for $40^{\circ}$ is $40^{\circ}$. Therefore, $\theta' = 40^{\circ}$. ::: If $\theta = 830^{\circ}$, find $\theta'$ :::{dropdown} Solution: First, we need to find the coterminal angle: \begin{align*} 830-360 & = 470\\ 470-360 & = 110\\ \theta_c & = 110^{\circ} \end{align*} Next, we find the reference angle for $110^{\circ}$. $$180-110=70$$ Therefore, $\theta' = 70^{\circ}$. ::: If $\theta = -120^{\circ}$, find $\theta'$. :::{dropdown} Solution: First, we must find the coterminal angle: $$-120+360 = 240$$ Therefore, $\theta_c=240^{\circ}$. Next, we will find the reference angle for $240^{\circ}$. $$360-240 = 60$$ Therefore, $\theta' = 60^{\circ}$. ::: If $\theta = -750^{\circ}$, find $\theta'$. :::{dropdown} Solution: First, we will find the coterminal angle: \begin{align*} -750+360 & = -390\\ -390+360 & = -30\\ -30 +360 & = 330\\ \theta_c & = 330^{\circ} \end{align*} Next, we will find the reference angle for $330^{\circ}$. $$360-330 = 30$$ Therefore, $\theta'=30^{\circ}$. ::: :::: Recall the table of values for cosine and sine from the previous section and attempt the following example. ::::{prf:example} :label: trigEvalExam Find the exact values of the following: $\cos(135^{\circ})$ :::{dropdown} Solution: If $\theta = 135^{\circ}$, then $$\theta' = 180-135 = 45^{\circ}$$ Therefore, the size of $\cos(135^{\circ})$ is $\frac{\sqrt{2}}{2}$. That is, $|\cos(135^{\circ})|=\frac{\sqrt2}{2}$. Since the terminal side of $135^{\circ}$ is in the second quadrant and cosine is negative in the second quadrant we finally know $$\cos(135^{\circ}) = - \cos(45^{\circ}) = -\frac{\sqrt2}{2}$$ ::: $\sin(495^{\circ})$ {dropdown} Solution: First, we will find the coterminal angle: $$495 - 360 = 135$$ Which means $\theta_c = 135^{\circ}$ and from previous example we then know $\theta'=45^{\circ}$. Next, since sine is positive in the second quadrant we know that the sign of the value will be positive. Therefore, $$\sin(495^{\circ})=\sin(45^{\circ}) = \frac{\sqrt2}{2}$$ $\cos(240^{\circ})$ :::{dropdown} Solution: First, we will find the reference angle $$240-180 = 60$$ Therefore, $\theta'=60$. Since the terminal side of $240^{\circ}$ is in quadrant three and cosine is negative in quadrant three we have the following: $$\cos(240^{\circ}) = -\cos(60^{\circ}) = -\frac{1}{2}$$ ::: :::: ::::{prf:example} :label: EvalTrigExam2 $$\cos(120^{\circ})+2\sin^2(60^{\circ})-\tan^2(30^{\circ})$$ :::{dropdown} Solution: \begin{align*} \cos(120^{\circ}) & = - \cos(60^{\circ}) = -\frac{1}{2}\\ \sin(60^{\circ}) & = \frac{\sqrt3}{2}\\ \tan(30^{\circ}) & = \frac{\sin(30^{\circ})}{\cos(30^{\circ})}\\ & = \frac{\frac12}{\frac{\sqrt3}{2}}\\ & = \frac{1}{\sqrt3} \end{align*} \begin{align*} \cos(120^{\circ})+2\sin^2(60^{\circ})-\tan^2(30^{\circ}) & = \left(-\frac{1}{2}\right)+2\left(\frac{\sqrt3}{2}\right)^2-\left(\frac{1}{\sqrt3}\right)^2\\ & = -\frac{1}{2}+\frac{3}{2}-\frac{1}{3}\\ & = 1-\frac13\\ & = \frac{2}{3} \end{align*} ::: :::: ::::{prf:example} :label: EvalTrigExam3 $$\sin^2(45^{\circ})+3\cos^2(135^{\circ})-2\tan(225^{\circ})$$ :::{dropdown} Solution: \begin{align*} \sin(45^{\circ}) & = \frac{\sqrt2}{2}\\ \cos(135^{\circ}) & = -\cos(45^{\circ}) = -\frac{\sqrt{2}}{2}\\ \tan(225^{\circ}) & = \frac{\sin(225)}{\cos(225)}=\frac{\sin(45)}{\cos(45)}\\ & = \frac{\frac{\sqrt2}{2}}{\frac{\sqrt2}{2}}=1 \end{align*} \begin{align*} \sin^2(45^{\circ})+3\cos^2(135^{\circ})-2\tan(225^{\circ}) & = \left(\frac{\sqrt2}{2}\right)^2+3\left(-\frac{\sqrt2}{2}\right)^2-2(1)\\ & = \frac{1}{2}+3\left(\frac{1}{2}\right)-2\\ & = 2-2 =0 \end{align*} ::: :::: ::::{prf:example} :label: simpSolveThetaExam1 If $\cos(\theta) = \frac{\sqrt3}{2}$ and $270^{\circ}<\theta<360^{\circ}$, find $\theta$. :::{dropdown} Solution: We know that $\cos(30^{\circ})=\frac{\sqrt3}{2}$. However, $\theta$ is in fourth quadrant. Therefore, $$\theta = 360^{\circ} - 30^{\circ} =330^{\circ}$$ ::: :::: ::::{prf:example} :label: simpSolvethetaExam2 If $\sin(\theta) = \frac{\sqrt2}{2}$ and $90^{\circ}<\theta<180^{\circ}$, find $\theta$. :::{dropdown} Solution: We know that $\sin(45^{\circ})=\frac{\sqrt2}{2}$ and $\theta$ is in the second quadrant. Therefore, $$\theta = 180^{\circ} - 45^{\circ} = 135^{\circ}$$ ::: :::: ::::{prf:example} :label: simpSolveThetaExam3 If $\tan(\theta) = \frac{\sqrt3}{3}$ and $180^{\circ}<\theta<270^{\circ}$, find $\theta$. :::{dropdown} Solution: First, it may help to rationalize the numerator $$ \dfrac{\sqrt{3}}{3}\cdot\dfrac{\sqrt{3}}{\sqrt{3}}=\dfrac{3}{3\sqrt{3}}=\dfrac{1}{\sqrt{3}}. $$ Next, divide the top and bottom by $2$ $$ \dfrac{1}{\sqrt{3}}\cdot\dfrac{\frac{1}{2}}{\frac{1}{2}}=\dfrac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}. $$ Since, $\tan(\theta)=\dfrac{\sin(\theta)}{\cos(\theta)}$ we want to find a $\theta$ such that $\cos(\theta)=\frac{\sqrt{3}}{2}$ and $\sin(\theta)=\dfrac{1}{2}$. Recall, $\cos(30)=\frac{\sqrt{3}}{2}$ and $\sin(30)=\frac{1}{2}$. Since $\theta$ is in quadrant III we know $$ \theta=180+30=210^{\circ} $$ ::: ::::