# Section 3.1 :::{prf:definition} Radians :label: defRads An angle with its vertex at the center of a circle that intercepts an arc on the circle equal in length to the radius of the circle has a measure of 1 radian. ::: !['Picture of one radian'](images/oneradian.png) Given that $360^{\circ}=2\pi\text{ radians}$ for simplicity we notice that $180^{\circ}=\pi\text{ radians}$. This means that $$ 1^{\circ}=\dfrac{\pi}{180}\text{ radians} $$ and $$ 1\text{ radians }=\left(\dfrac{180}{\pi}\right)^{\circ} $$ ::::{prf:example} :label: convrtDegRAds Convert from one unit to another. $30^{\circ}$ :::{dropdown} Solution: $$30\cdot\frac{\pi}{180}=\frac{\pi}{6}$$ ::: $\frac{2\pi}{3}$ radians :::{dropdown} Solution: $$\frac{2\pi}{3}\cdot\frac{180}{\pi}=120$$ ::: :::: !['Picture of the unit circle with degrees and radians'](images/unitcircleOnlyAngles.png) ::::{prf:example} :label: evalTrigExam Evaluate the following: $\cos(\frac{\pi}{6})$ :::{dropdown} Solution: $$\cos(\frac{\pi}{6})=\cos(30^{\circ})=\frac{\sqrt{3}}{2}$$ ::: $\sin(\frac{\pi}{4})$ :::{dropdown} Solution: $$\sin(\frac{\pi}{4})=\sin(45^{\circ})=\frac{\sqrt{2}}{2}$$ ::: $\cos(\frac{7\pi}{6})$ :::{dropdown} Solution: Notice that $\frac{7\pi}{6}$ is in quadrant III, the reference angle is $\frac{\pi}{6}$, and $\cos(\theta)<0$ when $\theta$ is in quadrant III: \begin{align*} \cos(\frac{7\pi}{6}) & =-\cos(\frac{\pi}{6})\\ & =-\cos(30^{\circ})\\ & =-\frac{\sqrt{3}}{2} \end{align*} ::: $\tan(\frac{5\pi}{3})$ :::{dropdown} Solution: Notice that $\frac{5\pi}{3}$ is in quadrant IV, the reference angle is $\frac{\pi}{3}$, and $\tan(\theta)<0$ when $\theta$ is in quadrant IV: \begin{align*} \tan(\frac{5\pi}{3}) & =-\tan(\frac{\pi}{3})\\ & =-\tan(60^{\circ})\\ & =-\dfrac{\sin(60^{\circ})}{\cos(60^{\circ})}\\ & =-\dfrac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}\\ & =-\sqrt{3} \end{align*} ::: ::::