# Section 3.3 :::{prf:definition} :label: unitCircleDef A circle centered at $(0,0)$ and has a radius of $1$ unit is called the **unit circle**. ::: !['image of a unit circle and its association with xy-plan and circle function'](images/unitcircle.png) The following functions are defined for any real number $s$ represented by a directed arc on the unit circle. \begin{align*}\cos(s) & =x & \sin(s) & =y & \tan(s) & =\dfrac{y}{x}\\ \sec(s) & =\frac{1}{x} & \csc(s) & =\frac{1}{y} & \cot(s) & =\dfrac{x}{y} \end{align*} The sine and cosine function is the set of all $x$ such that $x$ is an element of the real numbers. Tangent and secant function is the set of all $x$ such that $x\ne(2n+1)\cdot\frac{\pi}{2}$ where $n$ is any integer, $$ \{x\,|\,n\in\Z\land x\ne(2n+1)\cdot\frac{\pi}{2}\}. $$ Cotangent and cosecant function is the set of all $x$ such that $x\ne(2n)\cdot\frac{\pi}{2}$ where $n$ is any integer, $$ \{x\,|\,n\in\Z\land x\ne(2n)\cdot\frac{\pi}{2}\}=\{x\,|\,n\in\Z\land x\ne n\pi\} $$ ::::{prf:example} :label: cotermRefRadExam First, find the coterminal angle such that $\theta_{c}\in[0,2\pi)$, then find the reference angle $\theta'$. $\frac{13\pi}{4}$ :::{dropdown} Solution: \begin{align*} \frac{13\pi}{4}-2\pi & =\frac{5\pi}{4}\in[0,2\pi)\implies\theta_{c}=\frac{5\pi}{4}\\ \theta_{c}=\frac{5\pi}{4} & \implies\theta'=\frac{\pi}{4} \end{align*} ::: $\frac{17\,\pi}{6}$ :::{dropdown} Solution: \begin{align*} \dfrac{17\pi}{6}-2\pi & =\frac{5\pi}{6}\in[0,2\pi)\implies\theta_{c}=\dfrac{5\pi}{6}\\ \theta_{c}=\frac{5\pi}{6} & \implies\theta'=\frac{\pi}{6} \end{align*} ::: $\frac{13\,\pi}{3}$ :::{dropdown} Solution: \begin{align*} \dfrac{13\pi}{3}-2\pi & =\frac{7\pi}{3}\notin[0,2\pi)\\ \dfrac{7\pi}{3}-2\pi & =\frac{\pi}{3}\in[0,2\pi)\implies\theta_{c}=\frac{\pi}{3}\\ \theta_{c}=\frac{\pi}{3} & \implies\theta'=\frac{\pi}{3} \end{align*} ::: $-\frac{2\,\pi}{3}$ :::{dropdown} Solution: \begin{align*} -\frac{2\pi}{3}+2\pi & =\frac{4\pi}{3}\in[0,2\pi)\implies\theta_{c}=\dfrac{4\pi}{3}\\ \theta_{c}=\dfrac{4\pi}{3} & \implies\theta'=\frac{\pi}{3} \end{align*} ::: $-\frac{19\,\pi}{6}$ :::{dropdown} Solution: \begin{align*} -\dfrac{19\pi}{6}+2\pi & =-\frac{7\pi}{6}\notin[0,2\pi)\\ -\dfrac{7\pi}{6}+2\pi & =\frac{5\pi}{6}\in[0,2\pi)\implies\theta_{c}=\dfrac{5\pi}{6}\\ \theta_{c}=\dfrac{5\pi}{6} & \implies\theta'=\dfrac{\pi}{6} \end{align*} ::: $-\frac{\pi}{4}$ :::{dropdown} Solution: \begin{align*} -\frac{\pi}{4}+2\pi & =\frac{7\pi}{4}\in[0,2\pi)\implies\theta_{c}=\dfrac{7\pi}{4}\\ \theta_{c}=\dfrac{7\pi}{4} & \implies\theta'=\dfrac{\pi}{4} \end{align*} ::: :::: {prf:example} :label: evalTrigRadExam Find the exact values of the following: $\cos(\frac{11\,\pi}{3})$ :::{dropdown} Solution: \begin{align*} \dfrac{11\pi}{3}-2\pi & =\frac{5\pi}{3}\in[0,2\pi)\\ & \implies\theta_{c}=\dfrac{5\pi}{3}\land\theta_{c}\in(\frac{3\pi}{2},2\pi)\subseteq[0,2\pi)\\ & \implies\cos(\theta_{c})>0\\ \\\theta_{c}=\frac{5\pi}{3} & \implies\theta'=\frac{\pi}{3}\\ \\\therefore\cos(\frac{11\pi}{3}) & =\cos(\frac{\pi}{3})\\ & =\dfrac{1}{2} \end{align*} ::: $\sin(-\frac{5\,\pi}{4})$ :::{dropdown} Solution: \begin{align*} -\dfrac{5\pi}{4}+2\pi & =\frac{3\pi}{4}\in[0,2\pi)\\ & \implies\theta_{c}=\dfrac{3\pi}{4}\land\theta_{c}\in(\frac{\pi}{2},\pi)\subseteq[0,2\pi)\\ & \implies\sin(\theta_{c})>0\\ \\\theta_{c}=\dfrac{3\pi}{4} & \implies\theta'=\dfrac{\pi}{4}\\ \\\therefore\sin(-\frac{5\pi}{4}) & =\sin(\frac{\pi}{4})\\ & =\dfrac{\sqrt{2}}{2} \end{align*} ::: $\tan(\frac{11\,\pi}{2})$ :::{dropdown} Solution: \begin{align*} \dfrac{11\pi}{2}-2\pi & =\frac{7\pi}{2}\notin[0,2\pi)\\ \dfrac{7\pi}{2}-2\pi & =\frac{3\pi}{2}\in[0,2\pi)\\ & \implies\theta_{c}=\dfrac{3\pi}{2} \end{align*} If we consider $\tan(\frac{3\pi}{2})$ we would need to consider the fact that $\tan(\frac{3\pi}{2})=\dfrac{\sin(\frac{3\pi}{2})}{\cos(\frac{3\pi}{2})}$ and we must notice that $\cos(\frac{3\pi}{2})=0$. Therefore, $\tan(\dfrac{3\pi}{2})$ is undefined, which also means $\tan(\frac{11\pi}{2})$ is undefined. :::