# Section 5.1 In this section we recall the fundamental identities for trigonometric functions. For, example $\cos(-x)=\cos(x)$ and $\sin(-x)=-\sin(x)$. Later, will we also need to remember: Given $x^2+y^2=r^2$ (a circle with radius $r$), we have, \begin{align*} \cos(\theta)=\frac{x}{r} && \sin(\theta)=\frac{y}{r} && \tan(\theta)=\frac{y}{x}\\ \sec(\theta)=\frac{r}{x} && \csc(\theta)=\frac{r}{y} && \cot(\theta)=\frac{x}{y} \end{align*} We also have the **reciprocal identities** \begin{align*} \cot(\theta)=\frac{1}{\tan(\theta)} && \sec(\theta)=\frac{1}{\cos(\theta)} && \csc(\theta)=\frac{1}{\sin(\theta)} \end{align*} The **quotient identities** \begin{align*} \tan(\theta)=\frac{\sin(\theta)}{\cos(\theta)} && \cot(\theta)=\frac{\cos(\theta)}{\sin(\theta)} \end{align*} One of the most important identities that will be used through this chapter is $$\cos^2(\theta)+\sin^2(\theta)=1$$ By dividing both sides by $\cos^2(\theta)$ we then get $$1+\tan^2(\theta)=\sec^2(\theta)$$ Or dividing both sides by $\sin^2(\theta)$ we then get $$\cot^2(\theta)+1=\csc^2(\theta)$$ As a consequence of those three identities we have \begin{align*} \cos^2(\theta)&=1-\sin^2(\theta) & \sin^2(\theta)&=1-\cos^2(\theta)\\ &=(1-\sin(\theta))(1+\sin(\theta)) && =(1-\cos(\theta))(1+\cos(\theta))\\\\ \tan^2(\theta) & =\sec^2(\theta)-1 & \cot^2(\theta) & = \csc^2(\theta)-1 \end{align*} This may look like a lot to remember; however, only one identity must be memorized: $\cos^2(\theta)+\sin^2(\theta)=1$. All of the other identities "spawn" from that identity. We call this identity, Pythagorean Identity. ::::{prf:example} :label: 51exam1 If $\tan(\theta)=\frac{1}{3}$ and $\theta$ is in quadrant three, then find $\sin(\theta)$ and $\cos(\theta)$. :::{dropdown} Solution: First, we will construct the triangle involving this situation: !['picture of circle with triangle'](images/51exam1pic1.png) The hypotenuse of this triangle is \begin{align*} h^2 & = (-3)^2+(-1)^2\\ & = 10\\ h & = \sqrt{10} \end{align*} We have $x=-3$, $y=-1$, and $h=\sqrt{10}$. Therefore, $$\cos(\theta)=\frac{-3}{\sqrt{10}}$$ and $$\sin(\theta)=\frac{-1}{\sqrt{10}}$$ ::: :::: ::::{prf:example} :label: 51exam2 Write $\dfrac{1+\tan^{2}(\theta)}{1-\sec^{2}(\theta)}$ in terms of $\sin(\theta)$ and $\cos(\theta)$. Then simplify the expression so that there are no quotients by using the quotient identities or reciprocal identities. :::{dropdown} Solution: First, we will directly substitute cosine and sine into the original expression $$ \dfrac{1+\tan^{2}(\theta)}{1-\sec^{2}(\theta)}=\dfrac{1+\dfrac{\sin^{2}(\theta)}{\cos^{2}(\theta)}}{1-\dfrac{1}{\cos^{2}(\theta)}}. $$ Second, we will simplify \begin{align*} \dfrac{1+\dfrac{\sin^{2}(\theta)}{\cos^{2}(\theta)}}{1-\dfrac{1}{\cos^{2}(\theta)}} & =\dfrac{\frac{\cos^{2}(\theta)+\sin^{2}(\theta)}{\cos^{2}(\theta)}}{\frac{\cos^{2}(\theta)-1}{\cos^{2}(\theta)}}\\ & =\dfrac{\cos^{2}(\theta)+\sin^{2}(\theta)}{\cos^{2}(\theta)-1}\\ & =\dfrac{1}{-\left(1-\cos^{2}(\theta)\right)}\\ & =\dfrac{1}{-\sin^{2}(\theta)}. \end{align*} Finally, we will rewrite $-\dfrac{1}{\sin^{2}(\theta)}$. $$ -\dfrac{1}{\sin^{2}(\theta)}=-\csc^{2}(\theta). $$ ::: ::::