Calc 2 Mid-Term Summer 2021

Here is a collection of problems pulled from Jim's PowerPoint presentations.

  1. Evaluate the following:
$$\int \cos^4(2t)\,dt$$$$\int \cos(3t)\sin(8t)\,dt$$$$\int_1^3 \sin(8x)\sin(x)\,dx$$$$\int \cot(10x)\csc^4(10x)\,dx$$

Some useful identities

Trig Substitution:

Form Looks Like Substitution Limit Assumptions
$$\sqrt{b^2x^2-a^2}$$ $$\sec^2(\theta)-1=\tan^2(\theta)$$ $$x=\frac{a}{b}\sec(\theta)$$ $$0\le\theta<\frac{\pi}{2},\,\frac{\pi}{2}<\theta\le \pi$$
$$\sqrt{a^2-b^2x^2}$$ $$1-\sin^2(\theta)=\cos^2(\theta)$$ $$x=\frac{a}{b}\sin(\theta)$$ $$-\frac{\pi}{2}\le\theta\le\frac{\pi}{2}$$
$$\sqrt{a^2+b^2x^2}$$ $$\tan^2(\theta)+1=\sec^2(\theta)$$ $$x=\frac{a}{b}\tan(\theta)$$ $$-\frac{\pi}{2}<\theta<\frac{\pi}{2}$$

Use a trig substitution to eliminate the root.

  1. $\sqrt{4-9x^2}$
  2. $\sqrt{3+25x^2}$
  3. $\left(7x^2-3\right)^{\frac{5}{2}}$
  4. $\sqrt{(w+3)^2-100}$
  5. $\sqrt{4(9x-5)^2+1}$
  6. $\sqrt{1-4x-2x^2}$
  7. $\left( x^2-8x+21 \right)^{\frac{3}{2}}$
  8. $\sqrt{e^{8x}-9}$

Notice that $2\sqrt{1-\sec^2(\theta)}=2\sqrt{\tan^2(\theta)}=2\tan(\theta)$. Thus, by letting $x=\frac{2}{3}\sec(\theta)$ we have $$\sqrt{4-9x^2}=2\tan(\theta)$$

Notice that $\sqrt3\sqrt{\tan^2(\theta)+1}=\sqrt3\sqrt{\sec^2(\theta)}=\sqrt3\sec(\theta)$. thus, by letting $x=\frac{\sqrt3}{5}\tan(\theta)$ we have $$\sqrt{3+25x^2}=\sqrt3\sec(\theta)$$

Notice that $3^{5/2}\cdot (\sec^2(\theta)-1)^{5/2} = 3^{5/2}\cdot tan^5(\theta)$. Thus, by letting $x=\frac{\sqrt3}{\sqrt7}\sec(\theta)$ we have $$\left(7x^2-3\right)^{5/2}=3^{5/2}\tan^5(\theta)$$

Notice that $10\sqrt{\sec^2(\theta)-1}=10\tan(\theta)$. Thus, by letting $x=10\sec(\theta)-3$ we have $$\sqrt{(x+3)^2-100}=10\tan(\theta)$$

First, solve the equation: $$\frac12\tan(\theta)=9x-5$$ to get $x=\frac{\tan(\theta)+10}{18}$. Then we notice that $\sqrt{\tan^2(\theta)+1}=\sec(\theta)$. Thus, with $x=\frac{\tan(\theta)+10}{18}$, we have, $$\sqrt{4(9x-5)^2+1}=\sec(\theta)$$

Use a trig substitution to evaluat ethe given integral. $$\int \frac{\sqrt{x^2+16}}{x^4}\, dx$$

Notice that when $x=4\tan(\theta)$, we have $$\sqrt{x^2+16}=4\sec(\theta)$$

So we have:

$$\int \frac{\sqrt{x^2+16}}{x^4}\, dx= \int\frac{\sec(\theta)}{64\tan^4(\theta)}\,dx$$

Recall that $\csc^2(\xi)=\cot^2(\xi)+1$. That is,

$$\cot^3(\theta)\cdot \csc(\theta)=\left(\cot(\theta)\csc(\theta)\right)\cdot \cot^2(\theta)$$$$\left(\cot(\theta)\csc(\theta)\right)\cdot \cot^2(\theta) = \left(\cot(\theta)\csc(\theta)\right)\cdot \left(\csc^2(\theta)-1\right)$$$$\int\frac{\sec(\theta)}{64\tan^4(\theta)}\,dx = \frac{1}{64} \int \left(\cot(\theta)\csc(\theta)\right)\cdot \left(\csc^2(\theta)-1\right)\,d\theta$$

Let $u=\csc(\theta)$ and $du=\cot(\theta)\csc(\theta)$, then

$$\frac{1}{64} \int \left(\cot(\theta)\csc(\theta)\right)\cdot \left(\csc^2(\theta)-1\right)\,d\theta= \frac{1}{64}\int\left(u^2-1\right)\,du$$

Partial Fractions

Factor in Denominator Term in Partial Fraction Decomposition
$$ax+b$$ $$\dfrac{A}{ax+b}$$
$$(ax+b)^k$$ $$\dfrac{A_1}{ax+b}+\dfrac{A_2}{(ax+b)^2}+\cdots+\dfrac{A_k}{(ax+b)^k},\,k=1,2,3,...$$
$$(ax^2+bx+c)^k$$ $$\dfrac{A_1x+B_1}{ax^2+bx+c}+\dfrac{A_2x+B_2}{(ax^2+bx+c)^2}+\cdots+\dfrac{A_kx+B_k}{(ax^2+bx+c)^k},\,k=1,2,3,...$$

Improper Integrals

  1. If $\int_a ^tf(x)\,dx$ exists for every $t>a$, then $$\int_a^{\infty}f(x)\,dx=\lim_{t\to\infty}\int_a^tf(x)\,dx$$ Provided the limit exists and is finite.
  2. If $\int_t ^bf(x)\,dx$ exists for every $b>t$, then $$\int_{-\infty}^bf(x)\,dx=\lim_{t\to\infty}\int_t^bf(x)\,dx$$ Provided the limit exists and is finite.
  3. If $\int_{-\infty}^{c}f(x)\,dx$ and $\int_{c}^{\infty}f(x)\,dx$ are both convergent, then $$\int_{-\infty}^{\infty}f(x)\,dx=$\int_{-\infty}^{c}f(x)\,dx+\int_{c}^{\infty}f(x)\,dx$$ where $c$ is any number.
  4. If $f(x)$ is continuous on the interval $[a,b)$ and not continuous at $x=b$, then $$\int_a^bf(x)\,dx=\lim_{x\to b^-}\int_a^tf(x)\,dx$$ provied the limit exists and is finite.
  5. If $f(x)$ is continuous on the interval $(a,b]$ and not continuous at $x=a$, then $$\int_a^bf(x)\,dx=\lim_{t\to a^+}\int_t^bf(x)\,dx$$ provided the limit exists and is finite.
  6. If $f(x)$ is not continuous at $x=c$ where $a<c<b$ and $\int_a^cf(x)\,dx$ and $\int_c^bf(x)\,dx$ are both convergent, then $$\int_a^bf(x)\,dx=\int_a^cf(x)\,dx+\int_c^bf(x)\,dx$$
  7. If f(x) is not continuous at $x=a$ and $x=b$ and if $\int_a^cf(x)\,dx$ and $\int_c^bf(x)\,dx$ are both convergent, then $$\int_a^bf(x)\,dx=\int_a^cf(x)\,dx+\int_c^bf(x)\,dx$$ where $c$ is any number.

Note for number 3: the integral $\int_{-\infty}^{\infty}f(x)\,dx$ is convergent if and only if $\int_{-\infty}^cf(x)\,dx$ and $\int_c^{\infty}f(x)\,dx$ are both convergent.

Comparison Test


If $a>0$ then $$\int_a^{\infty}\dfrac{1}{x^p}\,dx$$ is convergent if $p>1$ and divergent if $p\le1$.


If $f(x)\ge g(x)\ge 0$ on the interval $[a,\infty)$, then

  1. If $\int_a^{\infty}f(x)\,dx$ converges then so does $\int_a^{\infty}g(x)\,dx$.
  2. If $\int_a^{\infty}g(x)\,dx$ diverges then so does $\int_a^{\infty}f(x)\,dx$.

L'Hospital's Rule

Suppose ${\displaystyle \lim_{x\to a}|f(x)|=\lim_{x\to a}|g(x)|=\infty}$ or $\displaystyle \lim_{x\to a}f(x)=\lim_{x\to a}g(x)=0$. If ${\displaystyle \lim_{x\to a}\dfrac{f'(x)}{g'(x)}}$ exists in either the finite or infinite sense, then $$ \lim_{x\to a}\dfrac{f(x)}{g(x)}=\lim_{x\to a}\dfrac{f'(x)}{g'(x)}. $$

Average Function Value

The average value of a function $f(x)$ over the interval $[a,b]$ is given by $$f_{ave}=dfrac{1}{b-a}\int_a^bf(x)\,dx$$

The Mean Value Theorem for Integrals

If $f(x)$ is continuous function on $[a,b]$ then there is a number $c\in[a,b]$ such that $$\int_a^bf(x)\,dx=f(c)(b-a)$$

Arc Length

If $f'$ is continuous on $[a,b]$, then the length (arc length) of the curve $y=f(x)$ from the point $A=(a,f(a))$ to the point $B=(b,f(b))$ is the value of the integral $$L=\int_a^b\sqrt{1+\left[f'(x)\right]^2}\,dx=\int_a^b\sqrt{1+\left[ \frac{dy}{dx} \right]^2}$$

Volume by Disks for Rotation About the x-Axis

Let $A(x)=\pi(R(x))^2$ where $R(x)$ is a function of the radius of the circle over the domain $x$. The Volume of the object is then $$V=\int_a^bA(x)\,dx$$

EXAMPLE (Volume by Disks for Rotation)

The region between the curve $y=\cos(x)$,$\frac{\pi}{4}\le x\le \frac{3\pi}{4}$, and the x-axis is revolved about the x-axis to generate a solid. Find its volume.


First, look at the graph: