Processing math: 3%
In [1]:
set_plot_option([svg_file, "maxplot.svg"])$

Intro

Definition (Series)

An infinite series is a sume of infinitely many terms and is written in the form n=1an=a1+a2+ and the parital sum of an infinite series is Sk=kn=1an=a1+a2++ak

The partial sum form a sequence {Sk}. If the sequence of partial sums converges to a real number S, the infinite series converges.

If we can describe the convergence of a series to S, we call S the sum of the series, and we write

n=1an=S

If the sequence of partial sums diverges, we have the divergence of a series.


Definition (Harmonic Series)

The harmonic series is defined as n=11n=1+12+13+


Algebraic Properties of Convergent Series

\newcommand{\SUM}[2]{\sum_{n=1}^{#1}\left(#2\right)} Let \SUM{\infty}{a_n} and \SUM{\infty}{b_n} be convegent series. Then the following algebraic properties hold.

  1. The series \SUM{\infty}{a_n\pm b_n} converges and \SUM{\infty}{a_n\pm b_n}=\SUM{\infty}{a_n}\pm \SUM{\infty}{b_n}
  2. For any real number c, the series \SUM{\infty}{ca_n} converges and \SUM{\infty}{ca_n}=c\SUM{\infty}{a_n}

Defintion (Geometric Series)

A geometric series is a series of the form

\SUM{\infty}{ar^{n-1}}=a+ar+ar^2+ar^3+\cdots
  • If |r|<1, the eries converges, and
\SUM{\infty}{ar^{n-1}}=\frac{a}{1-r}

were |r|<1.

  • If |r|>1, the series diverges.

Definition (Telescoping Series)

A telescoping series is a series in which most of the terms cancel in each of the partial sums, leaving only some of the first terms and some of the last terms. For example: \SUM{k}{b_n-b_{n+1}} = b_1-b_{k+1}


In [2]:
sum(1/2,i,1,10);
10*(1/2);
(1/2)^1+(1/2)^2+(1/2)^3+(1/2)^4;
sum((1/2)^n,n,1,4);
plot2d([discrete,makelist((1/2)^i,i,4)],[style,points])$
Out[2]:
\tag{${\it \%o}_{2}$}5
Out[2]:
\tag{${\it \%o}_{3}$}5
Out[2]:
\tag{${\it \%o}_{4}$}{{15}\over{16}}
Out[2]:
\tag{${\it \%o}_{5}$}{{15}\over{16}}
Gnuplot Produced by GNUPLOT 5.2 patchlevel 8 y x gnuplot_plot_1 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1 1.5 2 2.5 3 3.5 4

As you can see above instead of evaluating:

(1/2)^1+(1/2)^2+(1/2)^3+(1/2)^4 = 15/16

we compact the notation to: \sum_{n=1}^4 (1/2)^n = 15/16

Divergence and Integral Test

Theorem (Divergence Test)

If \lim_{n\to \infty}a_n=c\ne 0 or \lim_{n\to \infty}a_n does not exist, then the series \SUM{\infty}{a_n} diverges.


Theorem (Integral Test)

Consider the series \SUM{\infty}{a_n}.

  • If the sequence of a_n is made up of positive terms.
  • If there exists a function f and a positive integer N such that the following three conditions are satisfied:
  1. f is continuous,
  2. f is decreasing, and
  3. f(n)=a_n for all integers n\ge N.

Then \SUM{\infty}{a_n} \text{ and } \int_N^{\infty}f(x)\,dx both converge or both diverge.

NOTE

Very important to satisfy the three conditions in order to use the Integral test.


Definition (p-series)

For any real number p, the series \SUM{\infty}{\frac{1}{n^p}} is called a p-series.


FACTs (p-series Convergence or Divergence)

(More will follow after comparison tests like the ratio test and root test) Given the p-series \SUM{\infty}{\frac{1}{n^p}}

  • If p<0, then 1/n^p \to \infty, and if p=0, then 1/n^p \to 1. Therefore, by the divergence test the p-series diverges if p\le 0.
  • If p>0, then f(x)=1/x^p is a positive, continuous, decreasing function (integral test). Therefore, for p>0, we use the integral test, comparing \SUM{\infty}{\frac{1}{n^p}} \text{ and }\int_1^{\infty}\frac{1}{x^p}\,dx and from improper integrals we know
    • If p>1 then the p-series converges.
    • if 0<p\le 1 then the p-series diverges.

Theorem (Remainder Estimate from the Integral Test)

Suppose \SUM{\infty}{a_n} is a convergent series with positive terms. Suppose there exists a function f satisfying the following three conditions:

  1. f is continous,
  2. f is decreasing, and
  3. f(n)=a_n for all integers n\ge 1.

Let S_N be the N^{\text{th}} partial sum of \SUM{\infty}{a_n}. For all positive integers N,

S_N+\int_{N+1}^{\infty}f(x)\,dx<\SUM{\infty}{a_n}<S_N+\int_N^{\infty}f(x)\,dx

In other words, the remainder R_N=\SUM{\infty}{a_n}-S_N = \sum_{n=N+1}^{\infty}\left(a_n\right) satisfies the following estimate:

\int_{N+1}^{\infty}f(x)\,dx < R_n < \int_N^{\infty}f(x)\,dx.

Example (Estimating the value of a series)

Consider \SUM{\infty}{\frac{1}{n^3}}

  1. Find the error for S_{10}.
  2. Determien the elase value of N necessary such that S_N will estimate \SUM{\infty}{1/n^3} within 0.001.
In [3]:
sum(1/n^3,n,1,10);
float(sum(1/n^3,n,1,10));
f(x):=1/x^3;
integrate(f(x),x);
assume(N>1)$
integrate(f(x),x,1,N);
limit(integrate(f(x),x,1,N),N,infinity);
Out[3]:
\tag{${\it \%o}_{7}$}{{19164113947}\over{16003008000}}
Out[3]:
\tag{${\it \%o}_{8}$}1.197531985674193
Out[3]:
\tag{${\it \%o}_{9}$}f\left(x\right):={{1}\over{x^3}}
Out[3]:
\tag{${\it \%o}_{10}$}-{{1}\over{2\,x^2}}
Out[3]:
\tag{${\it \%o}_{12}$}{{1}\over{2}}-{{1}\over{2\,N^2}}
Out[3]:
\tag{${\it \%o}_{13}$}{{1}\over{2}}

As we can see from the calculations the remainder estimate is R_n=\frac{1}{2N^2}. So if we want the error for S_{10} we have:

In [4]:
Rn(N):=1/(2*N^2);
Rn(10);
float(Rn(10));
Out[4]:
\tag{${\it \%o}_{14}$}{\it Rn}\left(N\right):={{1}\over{2\,N^2}}
Out[4]:
\tag{${\it \%o}_{15}$}{{1}\over{200}}
Out[4]:
\tag{${\it \%o}_{16}$}0.005

Now determine least value of N. That is solve the following inequality: R_N<0.001 \text{ or } \frac{1}{2N^2}<0.001

In [5]:
assume(N>1)$
solve(1/(2*N^2)=0.001,N);
float(solve(1/(2*N^2)=0.001,N));
rat: replaced -0.001 by -1/1000 = -0.001
Out[5]:
\tag{${\it \%o}_{18}$}\left[ N=-2\,5^{{{3}\over{2}}} , N=2\,5^{{{3}\over{2}}} \right]
rat: replaced -0.001 by -1/1000 = -0.001
Out[5]:
\tag{${\it \%o}_{19}$}\left[ N=-22.3606797749979 , N=22.3606797749979 \right]

Therefore, the minimum necessary value is N=23.



Comparison Test

Theorem (Comparison Test)

  1. Suppose there exists an integer N such that 0\le a_n\le b_n for all n\ge N. If \SUM{\infty}{b_n} converges, then \SUM{\infty}{a_n} converges.
  2. Suppose there exists an integer N such that a_n\ge b_n\ge 0 for all n\ge N. If \SUM{\infty}{b_n} diverges, then \SUM{\infty}{a_n} diverges.

Theorem (Limit Comparison Test)

Let a_n, b_n\ge 0 for all n\ge 1.

  1. If \lim_{n\to \infty}\left(a_n/b_n\right) = L \ne 0, then \SUM{\infty}{a_n} and \SUM{\infty}{b_n} both converge or both diverge.
  2. If \lim_{n\to \infty}\left(a_n/b_n\right) = 0 and \SUM{\infty}{b_n} converges, then \SUM{\infty}{a_n} converges
  3. If \lim_{n\to \infty}\left(a_n/b_n\right) = \infty and \SUM{\infty}{b_n} diverges, then \SUM{\infty}{a_n} diverges.

Alternating Series

Definition (Alternating Series)

Any series whose terms alternate between positive and negative values is called an alternating series. An alternating series can be written in the form

\SUM{\infty}{(-1)^{n+1}b_n} = b_1 -b_2+b_3-b_4+\cdots

or \SUM{\infty}{(-1)^n b_n} = -b_1+b_2-b_3+b_4-\cdots

where b_n\ge 0 for all positive integers n.


Theorem (Alternating Series Test)

An alternating series of the form \SUM{\infty}{(-1)^{n+1}b_n}\text{ or } \SUM{\infty}{(-1)^n b_n} converges if

  1. 0\le b_{n+1} \le b_n for all n\ge 1 and
  2. \lim_{n\to \infty}b_n=0.

Theorem (Remainders in Alternating Series)

Consider the alternating series of the form \SUM{\infty}{(-1)^{n+1}b_n} \text{ or }\SUM{\infty}{(-1)^nb_n} that satisfies the hypotheses of the alternating series test.

Let S denote the sum of the series and S_N denote the N^{\text{th}} partial sum. For any integer N\ge 1, the remainder R_N = S - S_N satisfies |R_N|\le b_{N+1}


Definition (Absolute and Condition Convergence)

A series \SUM{\infty}{a_n} exhibits absolute convergence if \SUM{\infty}{|a_n|} converges. A series \SUM{\infty}{a_n} exhibits conditional convergence if \SUM{\infty}{a_n} converges but \SUM{\infty}{|a_n|} diverges.


Theorem (Absolute Convergence Implies Convergence)

If \SUM{\infty}{|a_n|} converges, then \SUM{\infty}{a_n} converges.


Ratio and Root Tests

Theorem (Ratio Test)

Let \SUM{\infty}{a_n} be a series with nonzero terms. Let \rho = \lim_{n\to \infty}\left|\frac{a_{n+1}}{a_n}\right|.

  1. If 0\le\rho <1, then \SUM{\infty}{a_n} converges absolutely.
  2. If \rho >1 or \rho = \infty, then \SUM{\infty}{a_n} diverges.
  3. If \rho = 1, the test does not provide any information.

Theorem (Root Test)

Consider the series \SUM{\infty}{a_n}. Let \rho = \lim_{n\to \infty}\sqrt[n]{\left|a_n\right|}

  1. If 0\le \rho <1, then \SUM{\infty}{a_n} converges absolutely.
  2. If \rho > 1 or \rho = \infty, then \SUM{\infty}{a_n} diverges.
  3. If \rho = 1, the test does not provide any information.

Series or Test Conclusions Comments

Divergence Test

For any series \sum_{n=1}^{\infty}(a_{n}), evaluate \lim_{n\to\infty}(a_{n}).

If \lim_{n\to\infty}(a_{n})=0, the test is inconclusive. The test cannot prove convergence of a series.
If \lim_{n\to\infty}(a_{n})\ne0, the series diverges.

Geometric Series

\sum_{n=1}^{\infty}\left(ar^{n-1}\right)

If |r|<1, the series converges to \frac{a}{1-r}. Any geometric series can be re-indexed to be written in the form a+ar+ar^{2}+\cdots, where a is the initial term and r is the ratio.
If |r|\ge1, the series diverges.

p-Series

\sum_{n=1}^{\infty}\left(\frac{1}{n^{p}}\right)

If p>1, the series converges. For p=1, we have the harmonic series \sum_{n=1}^{\infty}\left(\frac{1}{n}\right).
If p\le1, the series diverges.

Comparison Test

For \sum_{n=1}^{\infty}(a_{n}) with nonnegative terms, compare with a known series \sum_{n=1}^{\infty}(b_{n}).

If a_{n}\le b_{n} for all n\ge N and \sum_{n=1}^{\infty}(b_{n}) converges, then \sum_{n=1}^{\infty}(a_{n}) converges Typically used for a series similar to a geometric or p-series. It can sometimes be difficult to find an appropriate series.
If a_{n}\ge b_{n} for all n\ge N and \sum_{n=1}^{\infty}(b_{n}) diverges, then \sum_{n=1}^{\infty}(a_{n}) diverges.

Limit Comparison Test

For \sum_{n=1}^{\infty}(a_{n}) with positive terms, compare with a series \sum_{n=1}^{\infty}(b_{n}) by evaluating L=\lim_{n\to\infty}\frac{a_{n}}{b_{n}}.

If L is a real number and L\ne0, then \sum_{n=1}^{\infty}(a_{n}) and \sum_{n=1}^{\infty}(b_{n}) both converge or both diverge. Typically used for a series similar to a geometric or p-series. Often easier to apply than the comparison test.
If L=0 and \sum_{n=1}^{\infty}(b_{n}) converges, then \sum_{n=1}^{\infty}(a_{n}) converges.
If L=\infty and \sum_{n=1}^{\infty}(b_{n}) diverges, then \sum_{n=1}^{\infty}(a_{n}) diverges.

Integral Test

If there exists a positive, continuous, decreasing function f such that a_{n}=f(n) for all n\ge N,evaluate \int_{N}^{\infty}f(x)\,dx.

\int_{N}^{\infty}f(x)\,dx and \sum_{n=1}^{\infty}(a_{n}) both converge or both diverge. Limited to those series for which the corresponding function f can be easily integrated.

Alternating Series

\sum_{n=1}^{\infty}\left((-1)^{n+1}b_{n}\right) or \sum_{n=1}^{\infty}\left((-1)^{n}b_{n}\right)

If b_{n+1}\le b_{n} for all n\ge1 and b_{n}\to0 as n\to\infty, then the series converges. Only applies to alternating series.

Ratio Test

For any series \sum_{n=1}^{\infty}(a_{n}) with nonzero terms, let \rho=\lim_{n\to\infty}\left|\dfrac{a_{n+1}}{a_{n}}\right|.

If 0\le\rho<1, the series converges absolutely. Often used for series involving factorials or exponential.
If \rho>1 or \rho=\infty, the series diverges.
If \rho=1, the test is inconclusive.

Root Test

For any series \sum_{n=1}^{\infty}(a_{n}) with nonzero terms, let \rho=\lim_{n\to\infty}\sqrt[n]{|a_{n}|}.

If 0\le\rho<1, the series converges absolutely. Often used for series where |a_n|=b_n^n
If \rho>1 or \rho=\infty, the series diverges.
If \rho=1, the test is inconclusive.