Limits and Continuity


Recall (Function):

Definition:

A function \(f\) is a rule of correspondence that associates with each element \(x\) in one set \(D\), called the domain, a single value of \(f(x)\) from a second set, \(R\). The set of all values obtained is called the range of the function.

Domain/Range of Functions

Let \(y=f(x)\).

Name

\(f(x)\)

\(n\in \mathbb{Z}\)

\(a\in \mathbb{R}\)

Domain

Range

Example

Polynomials

\(f(x)=a_{n}x^{n}+\cdots+a_{1}x+a_{0}\)

n/a

n/a

\(\{ x | x \in (-\infty,\infty) \}\)

\(\{ y | y \in (-\infty,\infty) \}\)

\(f(x)=m x+b\) or \(f(x)=ax^2+bx+c\)

Radical

\(f(x)=x^{1/n}=\sqrt[n]{x}\)

\(n\) is even

n/a

\(\{ x|x\in[0,\infty) \}\)

\(\{ y|y\in(-\infty,\infty) \}\)

\(f(x)=\sqrt{x}\)

Radical

\(f(x)=x^{1/n}=\sqrt[n]{x}\)

\(n\) is odd

n/a

\(\{ x|x\in(-\infty,\infty) \}\)

\(\{ y|y\in(-\infty,\infty) \}\)

\(f(x)=\sqrt[3]{x}\)

Reciprocal

\(f(x)=x^n\)

\(n<0\)

n/a

\(\{ x|x\in(-\infty,0)\cup(0,\infty) \}\)

\(\{ y|y\in(-\infty,0)\cup(0,\infty) \}\)

\(f(x)=\frac{1}{x}\)

Exponential

\(f(x)=a^x\)

n/a

\(a>0\) and \(a\ne 1\)

\(\{ x|x\in(-\infty,\infty) \}\)

\(\{ y|y\in (0,\infty)\}\)

\(f(x)=e^x\)

Logarithmic

\(f(x)=\log_a(x)\)

n/a

\(a>0\) and \(a\ne 1\)

\(\{ x|x\in (0,\infty)\}\)

\(\{ y|y\in(-\infty,\infty) \}\)

\(f(x)=\log_e(x)=\ln(x)\)

Combination of Functions:

Let \(f\) and \(g\) be two functions.

  • \(\left( f\pm g \right)(x)=f(x)\pm g(x)\)

  • \(\left( f\cdot g \right)(x)=f(x)\cdot g(x)\)

  • \(\left( \frac{f}{g} \right)(x)=\left(f\div g\right)(x)=f(x)\div g(x)=\dfrac{f(x)}{g(x)}\) where \(g(x)\ne 0\) everywhere.

  • \(\left( f\circ g \right)(x)=f(g(x))\) the \(\circ\) is the composition of functions operator.

Notice that \(f\circ g \ne g\circ f\).

Monotonicity of Functions:

Let \(f\) be a function of \(x\) and for every \(x_1\) and \(x_2\), \(a\le x_1<x_2 \le b\):

  • If \(f(x_1)<f(x_2)\), then \(f\) is called an increasing function on the interval \([a,b]\).

  • If \(f(x_1)>f(x_2)\), then \(f\) is called a decreasing function on the interval \([a,b]\).

Recall (Limits):

Suppose

\[ \lim_{x\to a}f(x)=L\,\,\text{ and }\,\,\lim_{x\to a}g(x)=M \]

Then

  1. \({\displaystyle \lim_{x\to a}\left[f(x)\right]}^{r}{\displaystyle =\left[\lim_{x\to a}f(x)\right]^{r}=L^{r}}\) where \(r\) is a positive number.

  2. \({\displaystyle \lim_{x\to a}cf(x)=c\lim_{x\to a}f(x)=cL}\) where \(c\) is a real number.

  3. \({\displaystyle \lim_{x\to a}\left[f(x)\pm g(x)\right]=\lim_{x\to a}f(x)\pm\lim_{x\to a}g(x)=L\pm M}\).

  4. \({\displaystyle \lim_{x\to a}\left[f(x)g(x)\right]=\left[\lim_{x\to a}f(x)\right]\left[\lim_{x\to a}g(x)\right]=L\cdot M}\).

  5. \({\displaystyle \lim_{x\to a}\frac{f(x)}{g(x)}=\frac{\lim_{x\to a}f(x)}{\lim_{x\to a}g(x)}=\frac{L}{M}}\) where \(M\ne0\).

  6. \({\displaystyle \lim_{x\to a}x}=a\)

  7. \({\displaystyle \lim_{x\to a}b}=b\)

  8. \({\displaystyle \lim_{x\to \infty}\frac{1}{x}}=0\) (thm. 5)

  9. If \(f(x)=g(x)\) for all \(x\ne a\), then \({\displaystyle \lim_{x\to a}f(x)=\lim_{x\to a}g(x)}\). (cor. 1)

  10. If \(\lim_{x\to a^{+}}f(x)\ne\lim_{x\to a^{-}}f(x)\), then we say \(\lim_{x\to a}f(x)\) does not exists. (cor. 2)


Continuity of Functions

Definition (Three steps to continuity):

A function \(f\) is continuous at a number \(x=a\) if the following conditions are satisfied.

  1. \(f(x)\) is defined

  2. \({\displaystyle \lim_{x\to a}f(x)}\) exists

  3. \({\displaystyle \lim_{x\to a}f(x)=f(a)}\)

If \(f\) is not continuous at \(x=a\), then \(f\) is said to be discontinuous at \(x=a\).

Properties of Continuous Functions:

  1. The constant function \(f(x)=c\) is continuous everywhere.

  2. The identity function \(f(x)=x\) is continuous everywhere.

If \(f\) and \(g\) are continuous at \(x=a\), then

  1. \(f\pm g\) is continuous at \(x=a\).

  2. \(fg\) is continuous at \(x=a\).

  3. \(\frac{f}{g}\) is continuous at \(x=a\) provided that \(g(a)\ne0\).

Let \(P\) be a polynomial function and \(R\) be a rational function (\(R(x)=\frac{p(x)}{q(x)}\) where \(p\) and \(q\) are polynomials), then

  1. \(P\) is continuous everywhere.

  2. \(R\) is continuous everywhere except when \(q(x)=0.\)

Limits and Continuous Functions:

Let \(p(x)\) and \(q(x)\) be polynomial functions. Let \(a\) be a real number. Then: 1.

\[ \lim_{x\to a}p(x)=p(a) \]
\[ \lim_{x\to a}\frac{p(x)}{q(x)}=\frac{p(a)}{q(a)}\text{ when } q(a)\ne0 \]
\[ \lim_{x\to a}e^{p(x)}=e^{p(a)} \]
\[ \lim_{x\to a}\ln(p(x))=p(a)\text{ when } p(a)>0 \]

Intermediate Value Theorem (IVT)

If \(f\) is a continuous function on a closed interval \([a,b]\), and if \(y_{0}\) is any value between \(f(a)\) and \(f(b)\), then \(y_{0}=f(c)\) for some \(c\) in \([a,b]\).

ivtGraph1.svg

Definition

We say the solution of th equation \(f(x)=0\) is a root of the equation or the zero of the function \(f\).

Theorem

Let \(f\) be continuous on the interval \([a,b]\). Then the following are true:

  1. If \(f(x)>0\) for all \(x\in[a,b]\) then \(f\) has no roots for all \(x\in[a,b]\).

  2. If \(f(x)<0\) for all \(x\in[a,b]\) then \(f\) has no roots for all \(x\in[a,b]\).

Corollary

Let \(f\) be continuous on the interval \([a,b]\). Then the following are true:

  1. If there exists a \(c\in(a,b)\) such that \(f(c)=0\) and \(f(a)<0\), then \(f(b)>0\).

  2. If there exists a \(c\in(a,b)\) such that \(f(c)=0\) and \(f(a)>0\), then \(f(b)<0\).

Corollary

Let \(f\) be continuous on the interval \((a,b)\). Let \(a<x_1<c<x_2<b\) and \(f(c)=0\). Then the following are true:

  1. If \(f(x_1)<0\), then \(f(x)\le 0\) for all \(x\in(a,c]\).

  2. If \(f(x_1)>0\), then \(f(x)\ge 0\) for all \(x\in(a,c]\).

If \(f\) is continuous on the interval \((a,b)\), there exists a \(c\in(a,b)\) such that \(a<x_1<c<x_2<b\) and \(f(c)=0\), and \(f(x_2)>0\), then what can be said about all \(x\in[c,b)\)?


Example

Let \(f(x)=x^2-1\). Where is \(f(x)\) positive and where is \(f(x)\) negative.

SOLUTION:

Notice that \(f(1)=0\), \(f(-1)=0\), and \(f\) is continuous on \((-\infty,\infty)\).

  1. Choose \(x_1=-2<-1\). Since \(f(-2)=3\) we have by Corollary that \(f(x)>0\) for all \(x\in(-\infty,-1)\).

  2. Choose \(x_1=0<1\). Since \(f(0)=-1\) we have by Corollary that \(f(x)<0\) for all \(x\in(-1,1)\).

  3. Choose \(x_1=2>1\). Since \(f(2)=3\) we have by Corollary that \(f(x)>0\) for all \(x\in(1,\infty)\).

Finally, we conclude that

  1. \(f(x)>0\) for all \(x\in(-\infty,-1)\cup(1,\infty)\) and

  2. \(f(x)<0\) for all \(x\in(-1,1)\).

Consider the graph:

plot2d(x^2-1,[x,-3,3]);

svg

Exercise:

Let \(f(x)=\frac{x^3}{3}-4 x\). Find where \(f\) is positive or negative using the same reasoning above. The solution should follow the image below:

[HINT

  1. Solve \(f(x)=0\).

  2. Create 4 subintervals.

  3. Choose \(x_1\) in each of the subintervals.

  4. Make observations based on the Corollary.]

plot2d(x^3/3-4*x,[x,-5,5]);

svg


Example

Let

\[\begin{split} f(x)=\begin{cases} x^2+1 & x\ne 1\\ k & x = 1 \end{cases} \end{split}\]

Find \(k\) such that \(f\) is continuous at \(x=1\).

SOLUTION:

Need to find \(k\) such that:

  1. \(\lim_{x\to 1}f(x)\) exists.

  2. \(f(1)\) exists.

  3. \(\lim_{x\to1}f(x)=f(1)\).

First notice:

\[\begin{split} f(x)=\begin{cases} x^{2}+1 & x\ne1\\ k & x=1 \end{cases}=\begin{cases} x^{2}+1 & x<1\\ k & x=1\\ x^{2}+1 & x>1 \end{cases} \end{split}\]

(1) Evaluate

\[\begin{split} \lim_{x\to1}f(x)=\begin{aligned}\lim_{x\to1^{-}}f(x)=\lim_{x\to1^{-}}\left(x^{2}+1\right)=(1)^{2}+1=2\\ \lim_{x\to1^{+}}f(x)=\lim_{x\to1^{+}}\left(x^{2}+1\right)=(1)^{2}+1=2 \end{aligned} =2=\lim_{x\to1}f(x) \end{split}\]

which means \(\lim_{x\to1}f(x)\) exists.

(2) Evaluate

\[ f(1)=k \]

which means \(f(1)\) exists.

(3) In order for \(\lim_{x\to1}f(x)=f(1)\) we must set \(k=2\). If \(k=2\), then

\[ \lim_{x\to1}f(x)=2=k=f(1). \]

That is, in order for \(f\) to be continuous at \(x=1\), \(k\) must be \(2\).


Example

Let

\[\begin{split} f(x)=\begin{cases} \frac{x^2-a^2}{x-a} & x\ne a\\ k & x=a \end{cases} \end{split}\]

Find \(k\) such that \(f\) is continuous at \(x=a\).

SOLUTION:

Need to find \(k\) such that:

  1. \(\lim_{x\to a}f(x)\) exists.

  2. \(f(a)\) exists.

  3. \(\lim_{x\to a}f(x)=f(a)\).

First notice:

\[\begin{split} f(x)=\begin{cases} \frac{x^{2}-a^{2}}{x-a} & x\ne1\\ k & x=1 \end{cases}=\begin{cases} \frac{x^{2}-a^{2}}{x-a} & x<a\\ k & x=a\\ \frac{x^{2}-a^{2}}{x-a} & x>a \end{cases} \end{split}\]

(1) First, simplify

\[\begin{split} \begin{align*} \frac{x^{2}-a^{2}}{x-a} & =\dfrac{(x-a)(x+a)}{x-a)}\\ & =x+a \end{align*} \end{split}\]

Evaluate

\[\begin{split} \lim_{x\to a}f(x)=\begin{aligned}\lim_{x\to a^{-}}f(x)=\lim_{x\to1^{-}}\frac{x^{2}-a^{2}}{x-a}=x+a=a+a=2a\\ \lim_{x\to a^{+}}f(x)=\lim_{x\to1^{+}}\frac{x^{2}-a^{2}}{x-a}=x+a=a+a=2a \end{aligned} =2a=\lim_{x\to a}f(x) \end{split}\]

which means \(\lim_{x\to a}f(x)\) exists.

(2) Evaluate

\[ f(a)=k \]

which means \(f(a)\) exists.

(3) In order for \(\lim_{x\to a}f(x)=f(a)\) we must set \(k=2a\). If \(k=2a\), then

\[ \lim_{x\to1}f(x)=2a=k=f(1). \]

That is, in order for \(f\) to be continuous at \(x=a\), \(k\) must be \(2a\).

Exercise

Recall that the average rate of change of a function \(f\) is

\[ \dfrac{f(x_2)-f(x_1)}{x_2-x_1} \]

Let \(f(x)=x^2\).

  1. Find the average rate of change of the function \(f\) as \(x\) goes from \(1\) to \(2\).

  2. Find the average rate of change of the function \(f\) as \(x\) goes from \(0\) to \(1\).

  3. Find the average rate of change of the function \(f\) as \(x\) goes from \(0.5\) to \(1\).

  4. Find the average rate of change of the function \(f\) as \(x\) goes from \(1\) to \(1.5\).

  5. Attempt to find the instantaneous rate of change of the function \(f\) at \(x=1\).

(For (5.) use the method worked out from the previous example; here is the solutions to each part.)

f(x):=x^2$
m(x1,x2):=(f(x2)-f(x1))/(x2-x1)$
m(2,1);
m(0,1);
m(0.5,1); m(1,1.5);
limit(m(x,1),x,1);
\[\tag{${\it \%o}_{48}$}3\]
\[\tag{${\it \%o}_{49}$}1\]
\[\tag{${\it \%o}_{50}$}1.5\]
\[\tag{${\it \%o}_{51}$}2.5\]
\[\tag{${\it \%o}_{52}$}2\]