Limit Examples

Here we will look at specific examples using the limit.

Recall:

Suppose

limxaf(x)=L and limxag(x)=M

Then

  1. limxa[f(x)]r=[limxaf(x)]r=Lr where r is a positive number.

  2. limxacf(x)=climxaf(x)=cL where c is a real number.

  3. limxa[f(x)±g(x)]=limxaf(x)±limxag(x)=L±M.

  4. limxa[f(x)g(x)]=[limxaf(x)][limxag(x)]=LM.

  5. limxaf(x)g(x)=limxaf(x)limxag(x)=LM where M0.

  6. limxax=a

  7. limxab=b

  8. limx1x=0 (thm. 5)

  9. If f(x)=g(x) for all xa, then limxaf(x)=limxag(x). (cor. 1)

  10. If limxa+f(x)limxaf(x), then we say limxaf(x) does not exists. (cor. 2)


Example 1

Evaluate the limit:

limx3x2+3x+4x2+7

SOLUTION:

limx3x2+3x+4x2+7=limx3x2+limx33x+limx34limx3x2+limx37=(limx3x)2+3limx3x+4(limx3x)2+7=(3)2+33+4(3)2+7=118

Example 2

Evaluate the limit:

limx64x8x64

SOLUTION:

limx64x8x64=limx64x8x64(x+8x+8)=limx64x64(x64)(x+8)=limx641x+8=limx641limx64x+limx648=1limx64x+8=164+8=18+8=116

Example 3

Let

f(x)={x2+1x13x2x>1

Evaluate:

  1. f(1)

  2. limx1f(x)

SOLUTION:

  1. Evaluate f(1) means to evaluate f exactly when x=1. According to the definition of the piecewise function we have

f(1)=12+1=2.
  1. In order to evaluate this piecewise function we must first evaluate limx1f(x) and limx1+f(x). If the two are equal L then we say limx1f(x)=L; however, if the two are not equal we say limx1f(x) does not exist.

limx1f(x)=limx1(x2+1)=12+1=2limx1+f(x)=limx1+(3x2)=3(1)2=1

Since limx1f(x)limx1+f(x) we say limx1f(x) does not exist.


Example 4

Evaluate the limit:

limh01x+h1xh

SOLUTION:

First, we will simplify 1x+h1xh

1x+h1xh=(xx)1x+h1x(x+hx+h)h=x(x+h)x(x+h)h=hx(x+h)h=1h(hx(x+h))=1x(x+h)

Next, we notice that 1x+h1xh=1x(x+h) for all h0. Thus, by Corollary 1 we have

limh01x+h1xh=limh01x(x+h)=1x(x+0)=1x2.

Example 5

Evaluate the limit:

limh0x+hxh

SOLUTION:

First, we simplify x+hxh:

x+hxh=x+hxh(x+h+xx+h+x)=(x+h)(x)h(x+h+x)=hh(x+h+x)=1x+h+x

Next, notice x+hxh=1x+h+x for all h0. Thus, by Corollary 1 we have

limh0x+hxh=limh01x+h+x=1x+0+x=12x