Limit Examples

Here we will look at specific examples using the limit.

Recall:

Suppose

\[ \lim_{x\to a}f(x)=L\,\,\text{ and }\,\,\lim_{x\to a}g(x)=M \]

Then

  1. \({\displaystyle \lim_{x\to a}\left[f(x)\right]}^{r}{\displaystyle =\left[\lim_{x\to a}f(x)\right]^{r}=L^{r}}\) where \(r\) is a positive number.

  2. \({\displaystyle \lim_{x\to a}cf(x)=c\lim_{x\to a}f(x)=cL}\) where \(c\) is a real number.

  3. \({\displaystyle \lim_{x\to a}\left[f(x)\pm g(x)\right]=\lim_{x\to a}f(x)\pm\lim_{x\to a}g(x)=L\pm M}\).

  4. \({\displaystyle \lim_{x\to a}\left[f(x)g(x)\right]=\left[\lim_{x\to a}f(x)\right]\left[\lim_{x\to a}g(x)\right]=L\cdot M}\).

  5. \({\displaystyle \lim_{x\to a}\frac{f(x)}{g(x)}=\frac{\lim_{x\to a}f(x)}{\lim_{x\to a}g(x)}=\frac{L}{M}}\) where \(M\ne0\).

  6. \({\displaystyle \lim_{x\to a}x}=a\)

  7. \({\displaystyle \lim_{x\to a}b}=b\)

  8. \({\displaystyle \lim_{x\to \infty}\frac{1}{x}}=0\) (thm. 5)

  9. If \(f(x)=g(x)\) for all \(x\ne a\), then \({\displaystyle \lim_{x\to a}f(x)=\lim_{x\to a}g(x)}\). (cor. 1)

  10. If \(\lim_{x\to a^{+}}f(x)\ne\lim_{x\to a^{-}}f(x)\), then we say \(\lim_{x\to a}f(x)\) does not exists. (cor. 2)


Example 1

Evaluate the limit:

\[ \lim_{x\to3}\dfrac{x^{2}+3x+4}{x^{2}+7} \]

SOLUTION:

\[\begin{split} \begin{align*} \lim_{x\to3}\dfrac{x^{2}+3x+4}{x^{2}+7} & =\dfrac{\lim_{x\to3}x^{2}+\lim_{x\to3}3x+\lim_{x\to3}4}{\lim_{x\to3}x^{2}+\lim_{x\to3}7}\\ & =\dfrac{\left(\lim_{x\to3}x\right)^{2}+3\lim_{x\to3}x+4}{\left(\lim_{x\to3}x\right)^{2}+7}\\ & =\dfrac{\left(3\right)^{2}+3\cdot3+4}{\left(3\right)^{2}+7}\\ & =\frac{11}{8} \end{align*} \end{split}\]

Example 2

Evaluate the limit:

\[ \lim_{x\to64}\dfrac{\sqrt{x}-8}{x-64} \]

SOLUTION:

\[\begin{split} \begin{align*} \lim_{x\to64}\dfrac{\sqrt{x}-8}{x-64} & =\lim_{x\to64}\dfrac{\sqrt{x}-8}{x-64}\cdot\left(\dfrac{\sqrt{x}+8}{\sqrt{x}+8}\right)\\ & =\lim_{x\to64}\dfrac{x-64}{(x-64)\cdot(\sqrt{x}+8)}\\ & =\lim_{x\to64}\dfrac{1}{\sqrt{x}+8}\\ & =\dfrac{\lim_{x\to64}1}{\lim_{x\to64}\sqrt{x}+\lim_{x\to64}8}\\ & =\dfrac{1}{\sqrt{\lim_{x\to64}x}+8}\\ & =\dfrac{1}{\sqrt{64}+8}\\ & =\dfrac{1}{8+8}\\ & =\dfrac{1}{16} \end{align*} \end{split}\]

Example 3

Let

\[\begin{split} f(x)=\begin{cases} x^{2}+1 & x\le1\\ 3x-2 & x>1 \end{cases} \end{split}\]

Evaluate:

  1. \(f(1)\)

  2. \({\displaystyle \lim_{x\to1}f(x)}\)

SOLUTION:

  1. Evaluate \(f(1)\) means to evaluate \(f\) exactly when \(x=1\). According to the definition of the piecewise function we have

\[ f(1)=1^{2}+1=2. \]
  1. In order to evaluate this piecewise function we must first evaluate \(\lim_{x\to1^{-}}f(x)\) and \(\lim_{x\to1^{+}}f(x)\). If the two are equal \(L\) then we say \(\lim_{x\to1}f(x)=L\); however, if the two are not equal we say \(\lim_{x\to1}f(x)\) does not exist.

\[\begin{split} \begin{aligned}\lim_{x\to1^{-}}f(x) & =\lim_{x\to1^{-}}\left(x^{2}+1\right)=1^{2}+1=2\\ \lim_{x\to1^{+}}f(x) & =\lim_{x\to1^{+}}\left(3x-2\right)=3(1)-2=1 \end{aligned} \end{split}\]

Since \(\lim_{x\to1^{-}}f(x)\ne\lim_{x\to1^{+}}f(x)\) we say \(\lim_{x\to1}f(x)\) does not exist.


Example 4

Evaluate the limit:

\[ \lim_{h\to0}\dfrac{\frac{1}{x+h}-\frac{1}{x}}{h} \]

SOLUTION:

First, we will simplify \(\dfrac{\frac{1}{x+h}-\frac{1}{x}}{h}\)

\[\begin{split} \begin{align*} \dfrac{\frac{1}{x+h}-\frac{1}{x}}{h} & =\dfrac{\left(\frac{x}{x}\right)\cdot\frac{1}{x+h}-\frac{1}{x}\cdot\left(\frac{x+h}{x+h}\right)}{h}\\ & =\dfrac{\frac{x-(x+h)}{x(x+h)}}{h}\\ & =\dfrac{\frac{-h}{x(x+h)}}{h}\\ & =\dfrac{1}{h}\cdot\left(\dfrac{-h}{x(x+h)}\right)\\ & =-\dfrac{1}{x(x+h)} \end{align*} \end{split}\]

Next, we notice that \(\dfrac{\frac{1}{x+h}-\frac{1}{x}}{h}=-\dfrac{1}{x(x+h)}\) for all \(h\ne0\). Thus, by Corollary 1 we have

\[ \lim_{h\to0}\dfrac{\frac{1}{x+h}-\frac{1}{x}}{h}=\lim_{h\to0}\dfrac{-1}{x(x+h)}=-\dfrac{1}{x(x+0)}=-\dfrac{1}{x^{2}}. \]

Example 5

Evaluate the limit:

\[ \lim_{h\to0}\dfrac{\sqrt{x+h}-\sqrt{x}}{h} \]

SOLUTION:

First, we simplify \(\dfrac{\sqrt{x+h}-\sqrt{x}}{h}\):

\[\begin{split} \begin{align*} \dfrac{\sqrt{x+h}-\sqrt{x}}{h} & =\dfrac{\sqrt{x+h}-\sqrt{x}}{h}\cdot\left(\dfrac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}\right)\\ & =\dfrac{(x+h)-(x)}{h\left(\sqrt{x+h}+\sqrt{x}\right)}\\ & =\dfrac{h}{h\left(\sqrt{x+h}+\sqrt{x}\right)}\\ & =\dfrac{1}{\sqrt{x+h}+\sqrt{x}} \end{align*} \end{split}\]

Next, notice \(\dfrac{\sqrt{x+h}-\sqrt{x}}{h}=\dfrac{1}{\sqrt{x+h}+\sqrt{x}}\) for all \(h\ne0\). Thus, by Corollary 1 we have

\[ \lim_{h\to0}\dfrac{\sqrt{x+h}-\sqrt{x}}{h}=\lim_{h\to0}\dfrac{1}{\sqrt{x+h}+\sqrt{x}}=\dfrac{1}{\sqrt{x+0}+\sqrt{x}}=\dfrac{1}{2\sqrt{x}} \]