Section 1.8 - Absolute Value Function#

The absolute value of a number \(a\), denoted \(|a|\), gives the undirected distance from \(a\) to \(0\) on a number line. The absolute value function is defined as

\[\begin{split}|x|=\begin{cases} x & \text{if }x\ge0\\ -x & \text{if }x<0 \end{cases}.\end{split}\]

Eq or Ineq

Equivalent Form

Solution Set

Case 1: \(|x|=k\)

\(x=k\) or \(x=-k\)

\(\{-k,k\}\)

Case 2: \(0\le|x|<k\)

\(-k<x<k\)

\((-k,k)\)

Case 3: \(|x|>k\ge0\)

\(x<-k\) or \(x>k\)

\((-\infty,-k)\cup(k,\infty)\)

Theorem 2

The equation \(|x|=a\) if and only if \(x=a\) or \(x=-a\). Furthermore, \(|x|=|a|\) if and only if \(x=a\) or \(x=-a\).

Example 22

Solve

\[|9-4x|=7\]

Solution:

Since \(|x|=a\) if and only if \(x=a\) or \(x=-a\) we have

\[\begin{split}\begin{aligned} 9-4x & =7 & 9-4x & =-7\\ -4x & =-2 & -4x & =-16\\ x & =\frac{-2}{-4} & x & =\frac{-16}{-4}\\ & =\frac{1}{2} & & =4\end{aligned}\end{split}\]
Therefore, the solution set is
\[x=\{\frac{1}{2},4\}\]

Example 23

Solve

\[|3x+2|=|x-5|\]

Since \(\|x\|=\|a\|\) if and only if \(x=a\) or \(x=-a\) we have

\[\begin{split}\begin{aligned} 3x+2 & =x-5 & 3x+2 & =-(x-5)\\ 3x-x & =-5-2 & 3x+2 & =-x+5\\ 2x & =-7 & 3x+x & =5-2\\ x & =\frac{-7}{2} & 4x & =3\\ & & x & =\frac{3}{4}\end{aligned}\end{split}\]
Therefore, the solution set is
\[x=\{-\frac{7}{2},\frac{3}{4}\}.\]